In Situ Study of MBE Growth Mechanisms Using RHEED Techniques — Some Consequences of Multiple Scattering

Author(s):  
B. A. Joyce ◽  
P. J. Dobson ◽  
J. H. Neave ◽  
J. Zhang
1989 ◽  
Vol 145 ◽  
Author(s):  
Francoise S. Turco ◽  
M.C. Tamargo

AbstractReflection high energy electron diffraction (RHEED) intensity oscillations are often used to investigate in situ the growth of III-V materials by molecular beam epitaxy (MBE). In this work, we have used RHEED oscillations to perform a quantitative study of the growth mechanisms of ZnSe, a II-VI semiconductor.Our experiments illustrate that the RHEED pattern of ZnSe is far less intense than that of III-V materials grown by MBE, and no specular spot is observed over a wide range of growth conditions. We have, however, been able to record up to 25 oscillations allowing a quantitative study of the growth of ZnSe by MBE. Thus we have used RHEED oscillations to make an in situ systematic study of the influence of the three main growth parameters (substrate temperature and Zn or Se impinging fluxes) on the ZnSe growth rate. We observed that the variation of the ZnSe growth rate is due to a non unity sticking coefficient of both Zn and Se species at the interface in the standard growth conditions used. Our observations can be described using a thermodynamic model and enable us to control the desired growth conditions. Our work demonstrates the utility of RHEED oscillations to understand the MBE growth mechanisms of II-VI compounds.


Author(s):  
S. Q. Xiao ◽  
S. Baden ◽  
A. H. Heuer

The avian eggshell is one of the most rapidly mineralizing biological systems known. In situ, 5g of calcium carbonate are crystallized in less than 20 hrs to fabricate the shell. Although there have been much work about the formation of eggshells, controversy about the nucleation and growth mechanisms of the calcite crystals, and their texture in the eggshell, still remain unclear. In this report the microstructure and microchemistry of avian eggshells have been analyzed using transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS).Fresh white and dry brown eggshells were broken and fixed in Karnosky's fixative (kaltitanden) for 2 hrs, then rinsed in distilled H2O. Small speckles of the eggshells were embedded in Spurr medium and thin sections were made ultramicrotome.The crystalline part of eggshells are composed of many small plate-like calcite grains, whose plate normals are approximately parallel to the shell surface. The sizes of the grains are about 0.3×0.3×1 μm3 (Fig.l). These grains are not as closely packed as man-made polycrystalline metals and ceramics, and small gaps between adjacent grains are visible indicating the absence of conventional grain boundaries.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1554-1555
Author(s):  
Chen Gu ◽  
Nabil Bassim ◽  
Hatem Zurob

Sign in / Sign up

Export Citation Format

Share Document