Intrinsic High-Sensitivity Sensors Based on Etched Single-Mode Polymer Optical Fibers

2015 ◽  
Vol 27 (6) ◽  
pp. 604-607 ◽  
Author(s):  
Kishore Bhowmik ◽  
Gang-Ding Peng ◽  
Eliathamby Ambikairajah ◽  
Vedran Lovric ◽  
William R. Walsh ◽  
...  
1998 ◽  
Vol 20 (2) ◽  
pp. 103-112 ◽  
Author(s):  
H. Wen ◽  
D.G. Wiesler ◽  
A. Tveten ◽  
B. Danver ◽  
A. Dandridge

This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays.


1992 ◽  
Vol 247 ◽  
Author(s):  
Yasuhiro Koike

ABSTRACTHigh-bandwidth graded-index (GI) polymer optical fiber (POF) and single-mode POF with good mechanical properties were successfully obtained by our interfacial-gel polymerization technique. The bandwidth of the GI POF is about 1 GHz · km which is two hundred times larger than that of the conventional step-index (SI) POF. The minimum attenuation of transmission is 56 dB/km at 688-nm wavelength and 94 dB/km at 780-nm wavelength. The single-mode POF in which the core diameter was 3–15 μ m and the attenuation of transmission was 200 dB/km at 652-nm wavelength was successfully obtained for the first time.


2019 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Joanna Ewa Moś ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef


2010 ◽  
Vol 22 (2) ◽  
pp. 106-108 ◽  
Author(s):  
Guiyao Zhou ◽  
Chi-Fung Jeff Pun ◽  
Hwa-yaw Tam ◽  
Allan C. L. Wong ◽  
C. Lu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 806
Author(s):  
Ning Wang ◽  
Wenhao Tian ◽  
Haosheng Zhang ◽  
Xiaodan Yu ◽  
Xiaolei Yin ◽  
...  

An easily fabricated Fabry-Perot optical fiber humidity sensor with high performance was presented by filling Graphene Quantum Dots (GQDs) into the Fabry-Perot resonator, which consists of two common single mode optical fibers. The relative humidity sensing performance was experimentally investigated by an interference spectrum drift between 11 %RH to 85 %RH. 0.567 nm/%RH sensitivity and 0.99917 linear correlation were found in experiments that showed high sensitivity, good and wide-range linear responding. Meanwhile, its good responding repeatability was demonstrated by two circle tests with increasing and decreasing relative humidity. For investigating the measurement influence caused by a temperature jitter, the temperature responding was experimentally investigated, which showed its linear responding with 0.033 nm/°C sensitivity. The results demonstrate the humidity sensitivity is greatly higher than the temperature sensitivity. The wavelength shift influence is 0.0198 nm with 0.6 °C max temperature jitter in the experiment, which can be ignored in humidity experiments. The fast-dynamic responses at typical humidity were demonstrated in experiments, with 5.5 s responding time and 8.5 s recovering time. The sensors with different cavity lengths were also investigated for their humidity response. All sensors gave good linear responding and high sensitivity. In addition, the relation curve between cavity length and response sensitivity also had good linearity. The combination of GQDs and single mode optical fibers showed easy fabrication and good performance for an optical fiber relative humidity sensor.


1999 ◽  
Vol 11 (3) ◽  
pp. 352-354 ◽  
Author(s):  
Z. Xiong ◽  
G.D. Peng ◽  
B. Wu ◽  
P.L. Chu

Author(s):  
Reinhard Caspary ◽  
Daniel Zaremba ◽  
Robert Evert ◽  
Simon Schutz ◽  
Sophia Mohl ◽  
...  

2005 ◽  
Vol 30 (24) ◽  
pp. 3296 ◽  
Author(s):  
Kyriacos Kalli ◽  
Alexander Argyros ◽  
Helen Dobb ◽  
David J. Webb ◽  
Maryanne C.J. Large ◽  
...  

2011 ◽  
Vol 19 (8) ◽  
pp. 7790 ◽  
Author(s):  
Christos Markos ◽  
Wu Yuan ◽  
Kyriakos Vlachos ◽  
Graham E. Town ◽  
Ole Bang

Sign in / Sign up

Export Citation Format

Share Document