scholarly journals Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers

2020 ◽  
Vol 12 (3) ◽  
pp. 79
Author(s):  
Mateusz Łukasz Jóźwicki ◽  
Mateusz Gargol ◽  
Małgorzata Gil-Kowalczyk ◽  
Paweł Mergo

The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF ReferencesO. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schlüter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef

2019 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Malwina Julita Niedźwiedź ◽  
Małgorzata Gil ◽  
Mateusz Gargol ◽  
Wiesław Marian Podkościelny ◽  
Paweł Mergo

The aim of this work was to determine optimal extrusion temperature for polymer optical fibers. For preliminary studies poly(methyl methacrylate) (PMMA) granulate was used. Samples of commercially available PMMA were subjected to four different temperatures in which were kept in oven for three different period of time. To examine the changes in the chemical structure of the polymer, an ATR-FT-IR (Attenuation Total Reflection Fourier Transform Infrared Spectroscopy) was chosen. Full Text: PDF ReferencesK. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct. 20, 013002 (2011) CrossRef O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, "POF Polymer Optical Fibers for Data Communication" (New York, Springer-Verlag Berlin Heidelberg 2002). CrossRef M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N.A. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C. Martijn de Sterke, N.A.P. Nicorovici, "Microstructured polymer optical fibre", Opt Express 9, 319 (2001). CrossRef O. Çetinkaya, G. Wojcik, P. Mergo, "Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions", Mater Res Express 5, 1 (2018). CrossRef P. Mergo, M. Gil, K. Skorupski, J. Klimek, G. Wójcik, J. Pędzisz, J. Kopec, K. Poruraj, L. Czyzewska, A. Walewski, A. Gorgol, "Low loss poly(methyl methacrylate) useful in polymer optical fibres technology", Phot. Lett. Poland, 5, 170 (2013). CrossRef J. Grdadolnik, "ATR-FTIR Spectroscopy: Its advantages and limitations", Acta Chim Slov. 49, 631 (2002). DirectLink P. Borowski, S. Pasieczna-Patkowska, M. Barczak, K. Pilorz, "Theoretical Determination of the Infrared Spectra of Amorphous Polymers", J Phys Chem A 116, 7424 (2012). CrossRef G. Socrates, "Infrared and Raman Characteristic Group Frequencies Tables and Charts" Third Edition (Baffins Lane Chichester, John Wiley & Sons Ltd 2001). DirectLink W. Schnabel, Polymer Degradation Principles and Practical Applications (Berlin, Akademie-Verlag 1981). DirectLink


Author(s):  
Werner Daum ◽  
Jürgen Krauser ◽  
Peter E. Zamzow ◽  
Olaf Ziemann

The Analyst ◽  
2020 ◽  
Vol 145 (15) ◽  
pp. 5307-5313
Author(s):  
Huan Lin ◽  
Xin Cheng ◽  
Ming-Jie Yin ◽  
Zhouzhou Bao ◽  
Xunbin Wei ◽  
...  

A flexible porphyrin doped polymer optical fiber was developed for fast and highly sensitive monitoring of DNT vapors.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2414 ◽  
Author(s):  
Zbigniew Suchorab ◽  
Małgorzata Franus ◽  
Danuta Barnat-Hunek

This article presents research results relating to the potential for waste utilization in the form of polymer optical fiber (POF) scraps. This material is difficult to recycle due to its diverse construction. Three different volumes of POF were used in concrete in these tests: 1%, 2%, and 3%. The experimental studies investigated the basic properties of the concrete, the elastic and dynamic moduli, as well as deformation and deflection of reinforced beams. The microstructures, including the interfacial transition zones (ITZs), were recorded and analyzed using a scanning electron microscope. It was observed that 180 freezing–thawing cycles reduced the concrete frost resistance containing 3% POFs by half compared to the control concrete. The resistance to salt crystallization of this concrete decreased by about 55%. POFs have significant effects on the splitting tensile and flexural strengths compared to the compressive strength. The control beams were destroyed during the four-point static bending tests at half the force applied to the beams that were reinforced with POFs.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3011 ◽  
Author(s):  
Claire Guignier ◽  
Brigitte Camillieri ◽  
Michel Schmid ◽  
René M. Rossi ◽  
Marie-Ange Bueno

The objective of this paper is to study the ability of polymer optical fiber (POF) to be inserted in a knitted fabric and to measure both pressure and friction when walking. Firstly, POF, marketed and in development, have been compared in terms of the required mechanical properties for the insertion of the fiber directly into a knitted fabric on an industrial scale, i.e. elongation, bending rigidity, and minimum bending radius before plastic deformation. Secondly, the chosen optical fiber was inserted inside several types of knitted fabric and was shown to be sensitive to friction and compression. The knitted structure with the highest sensitivity has been chosen for sock prototype manufacturing. Finally, a feasibility study with an instrumented sock showed that it is possible to detect the different phases of walking in terms of compression and friction.


1996 ◽  
Vol 05 (01) ◽  
pp. 73-88 ◽  
Author(s):  
T. YAMAMOTO ◽  
K. FUJII ◽  
A. TAGAYA ◽  
E. NIHEI ◽  
Y. KOIKE ◽  
...  

Basic characteristics of organic-dye doped polymer optical fibers (DPOFs) are demonstrated. The devices contain laser dye, such as Rhodamine 6G (R6G) and Rhodamine B (RB) in the core region. Firstly, amplification characteristics of DPOF amplifiers (PO-FAs) excited by a pulse-operated, doubled Nd:YAG laser are demonstrated, e.g., a 250 mm-length of RB-POFA gives 1 kW (30 dB) of amplified signal at 591 nm. Next, an all solid state system of RB DPOF laser (POFL) is discussed by numerical simulation and the experimental result of high-power amplified spontaneous emission (ASE) by strong excitation of DPOF is shown.


1992 ◽  
Vol 247 ◽  
Author(s):  
Yasuhiro Koike

ABSTRACTHigh-bandwidth graded-index (GI) polymer optical fiber (POF) and single-mode POF with good mechanical properties were successfully obtained by our interfacial-gel polymerization technique. The bandwidth of the GI POF is about 1 GHz · km which is two hundred times larger than that of the conventional step-index (SI) POF. The minimum attenuation of transmission is 56 dB/km at 688-nm wavelength and 94 dB/km at 780-nm wavelength. The single-mode POF in which the core diameter was 3–15 μ m and the attenuation of transmission was 200 dB/km at 652-nm wavelength was successfully obtained for the first time.


2012 ◽  
Vol 724 ◽  
pp. 49-52 ◽  
Author(s):  
Woo Teck Kwon ◽  
Soo Ryong Kim ◽  
Y. Kim ◽  
Yoon Joo Lee ◽  
Eun Jin Jung ◽  
...  

β-SiC powder was synthesized directly from silicon sludge with carbon black. Large amount of silicon sludge is generated from Solar Cell industry. In an environmental and economic point of view, recycling silicon sludge is important. In this study, two kinds of silicon sludge were characterized using XRD, SEM/EDS and FT-IR. SiC powder was synthesized by the reaction of ball-milled silicon powder for 3h in vacuum at different temperatures (1350 and 1600). Physical properties of the heat treated SiC have been characterized using a SEM, XRD, Particle size analyzer and FT-IR Spectroscopy.


2013 ◽  
Vol 543 ◽  
pp. 385-388 ◽  
Author(s):  
Loukas Athanasekos ◽  
Nikos Aspiotis ◽  
Alexandros El Sachat ◽  
Stergios Pispas ◽  
Christos Riziotis

A novel approach on lysozyme sensing is proposed by employing Polymer Optical Fibers functionalized successfully with overlayers of block copolymer sensitive materials. The detection scheme is based on electrostatic interaction between lysozyme and the copolymer. Low concentration levels of lysozyme have been detected successfully with almost spontaneous response times.


Sign in / Sign up

Export Citation Format

Share Document