Higher deposition rates in laser hot wire cladding (LHWC) by beam oscillation and thermal control

Author(s):  
Dieter Tyralla ◽  
Thomas Seefeld
2002 ◽  
Vol 715 ◽  
Author(s):  
R. E. I. Schropp ◽  
Y. Xu ◽  
E. Iwaniczko ◽  
G. A. Zaharias ◽  
A. H. Mahan

AbstractWe have explored which deposition parameters in Hot Wire CVD have the largest impact on the quality of microcrystalline silicon (μc-Si) made at deposition rates (Rd) < 10 Å/s for use in thin film solar cells. Among all parameters, the filament temperature (Tfil) appears to be crucial for making device quality films. Using two filaments and a filament-substrate spacing of 3.2 cm, μc-Si films, using seed layers, can be deposited at high Tfil (∼2000°C) with a crystalline volume fraction < 70-80 % at Rd's < 30 Å/s. Although the photoresponse of these layers is high (< 100), they appear not to be suitable for incorporation into solar cells, due to their porous nature. n-i-p cells fabricated on stainless steel with these i-layers suffer from large resistive effects or barriers, most likely due to the oxidation of interconnected pores in the silicon layer. The porosity is evident from FTIR measurements showing a large oxygen concentration at ∼1050 cm-1, and is correlated with the 2100 cm-1 signature of most of the Si-H stretching bonds. Using a Tfil of 1750°C, however, the films are more compact, as seen from the absence of the 2100 cm-1 SiH mode and the disappearance of the FTIR Si-O signal, while the high crystalline volume fraction (< 70-80 %) is maintained. Using this Tfil and a substrate temperature of 400°C, we obtain an efficiency of 4.9 % for cells with a Ag/ZnO back reflector, with an i-layer thickness of only ∼0.7 μm. High values for the quantum efficiency extend to very long wavelengths, with values of 33 % at 800 nm and 15 % at 900 nm, which are unequalled by a-SiGe:H alloys. Further, by varying the substrate temperature to enable deposition near the microcrystalline to amorphous transition (‘edge’) and incorporating variations in H2 dilution during deposition of the bulk, efficiencies of 6.0 % have been obtained. The Rd's of these i-layers are 8-10 Å/s, and are the highest to date obtained with HWCVD for microcrystalline layers used in cells with efficiencies of ∼6 %.


1987 ◽  
Vol 1 (8) ◽  
pp. 736-742 ◽  
Author(s):  
S Ueguri ◽  
Y Tabata ◽  
T Shimizu ◽  
T Mizuno

2000 ◽  
Vol 609 ◽  
Author(s):  
Brent P. Nelson ◽  
Yueqin Xu ◽  
A. Harv Mahan ◽  
D.L. Williamson ◽  
R.S. Crandal

ABSTRACTWe grow hydrogenated amorphous-silicon (a-Si:H) by the hot-wire chemical vapor deposition (HWCVD) technique. In our standard tube-reactor we use a single filament, centered 5 cm below the substrate and obtain deposition rates up to 20 Å/s. However, by adding a second filament, and decreasing the filament-to-substrate distance, we are able to grow a-Si:H at deposition rates exceeding 167 Å/s (1 µm/min). We find the deposition rate increases with increasing deposition pressure, silane flow rate, and filament current and decreasing filament-tosubstrate distance. There are significant interactions among these parameters that require optimization to grow films of optimal quality for a desired deposition rate. Using our best conditions, we are able to maintain an AM1.5 photoconductivity-to-dark-conductivity ratio of 105 at deposition rates up to 130 Å/s, beyond which the conductivity ratio decreases. Other electronic properties decrease more rapidly with increasing deposition rate, including the ambipolar diffusion length, Urbach energy, and the as-grown defect density. Measurements of void density by small-angle X-ray scattering (SAXS) reveal an increase by well over an order of magnitude when going from one to two filaments. However, both Raman and X-ray diffraction (XRD) measurements show no change in film structure with increasing deposition rates up to 144 Å/s, and atomic force microscopy (AFM) reveals little change in topology.


2004 ◽  
Vol 808 ◽  
Author(s):  
Markus Kupich ◽  
Dmitry Grunsky ◽  
Bernd Hofferberth ◽  
Bernd Schröder

ABSTRACTRecently, hot-wire deposited microcrystalline silicon has attracted increasing attention. The use of hot-wire deposited intrinsic μc-Si:H for high efficiency solar cells was demonstrated by Klein et al. [1]. Integration of high-quality intrinsic μc-Si:H into all-hot-wire nip solar cells, prepared close to the transition to amorphous growth using a tantalum catalyzer, resulted in initial and stable efficiencies of 5.4 % on simple stainless steel substrates [2]. However, the deposition rates for the absorber material in both cases remained low, at values around 1 Å/s.In the present study we report on the dependence of deposition rate and material quality on the design and area of the tantalum catalyzer. It was found that different filament geometries require considerable changes in certain deposition conditions to optimize material properties. So, for example, enlarging the catalyzer surface made it necessary to decrease the hydrogen dilution of the process gas, in order to obtain the desired microcrystalline material close to the phase transition. These changes might be understood in terms of alterations of the gas decomposition relations on the catalyzer surface. For these modified conditions, deposition rates in the range of 2.5-10 Å/s could be achieved for μc-Si:H due to the fact that a higher silane fraction of the process gas could be used. For different wire geometries, the optimized intrinsic layers were incorporated into solar cells. Using a catalyzer with modified geometry and enlarged surface area, conversion efficiencies of ν = 4.4 % could be achieved for all-μc-Si:H, all-HWCVD solar cells at a rate of about 3 Å/s.


2002 ◽  
Vol 715 ◽  
Author(s):  
Brent P. Nelson ◽  
Dean H. Levi

AbstractWe use real-time spectroscopic ellipsometry (RTSE) for in-situ characterization of the optical properties and surface roughness (Rs) of hydrogenated amorphous silicon (a-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) with varying deposition rates (5 to 120 Å/s). Early time evolution of the Rs during growth is remarkably similar for all deposition rates. During the first few Ås of growth, there is a sharp increase in Rs as the a-Si:H nucleates in separate islands. This is followed by a reduction of Rs as these areas coalesce into a bulk film, which occurs at an average thickness of 100 Å. After coalescence the Rs rises to a stable value that is dependent upon growth conditions with a general tendency for the Rs to increase with growth rate. However, neither the Rs nor the material electronic properties are unique for a given deposition rate. Films grown under high silane flow and low pressure have a better photoresponse and a lower Rs than films grown at the same deposition rate but with low silane flow and high pressure. We observe a stronger correlation of film properties with Rs than with deposition rate; namely a monotonic decrease in photo-response, and increase in optical gap, with increasing Rs.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


2002 ◽  
Vol 715 ◽  
Author(s):  
Keda Wang ◽  
Haoyue Zhang ◽  
Jian Zhang ◽  
Jessica M. Owens ◽  
Jennifer Weinberg-Wolf ◽  
...  

Abstracta-Si:H films were prepared by hot wire chemical vapor deposition. One group was deposited at a substrate temperature of Ts=250°C with varied hydrogen-dilution ratio, 0<R<10; the other group was deposited with fixed R=3 but a varied Ts from 150 to 550°C. IR, Raman and PL spectra were studied. The Raman results indicate that there is a threshold value for the microstructure transition from a- to μc-Si. The threshold is found to be R ≈ 2 at Ts = 250°C and Ts ≈ 200°C at R=3. The IR absorption of Si-H at 640 cm-1 was used to calculate the hydrogen content, CH. CH decreased monotonically when either R or Ts increased. The Si-H stretching mode contains two peaks at 2000 and 2090 cm-1. The ratio of the integral absorption peaks I2090/(I2090+I2090) showed a sudden increase at the threshold of microcrystallinity. At the same threshold, the PL features also indicate a sudden change from a- to μc-Si., i.e. the low energy PL band becomes dominant and the PL total intensity decreases. We attribute the above IR and PL changes to the contribution of microcrystallinity, especially the c-Si gain-boundaries.


2007 ◽  
Vol 38 (3) ◽  
pp. 245-258 ◽  
Author(s):  
Leonid L. Vasiliev ◽  
Andrei G. Kulakov ◽  
L. L. Vasiliev, Jr ◽  
Mikhail I. Rabetskii ◽  
A. A. Antukh

Author(s):  
S. A. Hryshyn ◽  
A. G. Batischev ◽  
S. V. Koldashov ◽  
Aliaksei L. Petsiuk ◽  
V. A. Seliantev ◽  
...  

Author(s):  
Alejandro Torres ◽  
Donatas Mishkinis ◽  
Andrei Kulakov ◽  
Francisco Romera ◽  
Carmen Gregori

Sign in / Sign up

Export Citation Format

Share Document