Development of SSR Markers and Genetic Variability in Physiological Traits in Bambara Groundnut (Vigna subterranea L. Verdc)

Author(s):  
R. Beena ◽  
M. S. Sheshshayee ◽  
J. N. Madhura ◽  
T. G. Prasad ◽  
M. Udayakumar
2020 ◽  
Vol 21 (9) ◽  
Author(s):  
MUHAMMAD FAUZAN FARID ALHAMDI ◽  
Asep Setiawan ◽  
Satriyas Ilyas ◽  
Wai Kuan Ho

Abstract. Alhamdi MFF, Setiawan A, Ilyas S, Ho WK. 2020. Genetic variability of Indonesian landraces of Vigna subterranea: The morphological characteristics and molecular analysis using SSR markers. Biodiversitas 21: 3929-3937. Bambara groundnut (Vigna subterranea (L.) Verdc.) is a potential grain, which can be considered as an alternative source of protein and carbohydrate. Due to unavailability of commercial bambara groundut cultivar in Indonesia, the characterization of bambara groundnut landraces is an important step before developing cultivar with traits of interest. The objective of the research was to access genetic variability of Indonesian landraces of bambara groundnut with different seed coat colors based on morphological and molecular markers. The experiment was arranged as split-plot in a complete randomized block design with the main plot was cultivation methods and the sub plot was landraces. There were differences in leaf shape and pod shape among the landraces. There were two main clusters of Indonesian landraces of bambara groundnut with 88.28% similarity. The first cluster was Cream, Brown Sumedang, Black Sumedang and Black Tasikmalaya, and the second cluster was Black Sukabumi, Brown Gresik, Black Madura, and Black Gresik. The result based on SSR marker with capillary electrophoresis indicated Black Gresik and Black Madura landraces were different from other Indonesian landraces.  Cream Sumedang or Brown Sumedang from the first cluster and Black Gresik or Brown Gresik from the second cluster have the farthest distances for developing improved variety of bambara groundnut.


Genome ◽  
2011 ◽  
Vol 54 (11) ◽  
pp. 898-910 ◽  
Author(s):  
P. Somta ◽  
S. Chankaew ◽  
O. Rungnoi ◽  
P. Srinives

Bambara groundnut ( Vigna subterranea (L.) Verdc.) is an important African legume crop. In this study, a collection consisting of 240 accessions was analyzed using 22 simple sequence repeat (SSR) markers. In total, 166 alleles were detected, with a mean of 7.59 alleles per locus. Allelic and gene diversities were higher in the west African and Cameroon/Nigeria regions with 6.68 and 6.18 alleles per locus, and 0.601 and 0.571, respectively. The genetic distance showed high similarity between west African and Cameroon/Nigeria accessions. Principal coordinate analyses and neighbor-joining analysis consistently revealed that the majority of west African accessions were grouped with Cameroon/Nigeria accessions, but they were differentiated from east African, central African, and southeast Asian accessions. Population structure analysis showed that two subpopulations existed, and most of the east African accessions were restricted to one subpopulation with some Cameroon/Nigeria accessions, whereas most of the west African accessions were associated with most of the Cameroon/Nigeria accessions in the other subpopulation. Comparison with SSR analysis of other Vigna cultigens, i.e., cultivated azuki bean ( Vigna angularis ) and mungbean ( Vigna radiata ), reveals that the mean gene diversity of Bambara groundnut was lower than azuki bean but higher than mungbean.


2016 ◽  
Vol 8 (11) ◽  
pp. 69 ◽  
Author(s):  
Amara Evangeline Unigwe ◽  
Abe Shegro Gerrano ◽  
Patrick Adebola ◽  
Michael Pillay

<p>Bambara groundnut (<em>Vigna subterranea </em>L. Verdc) is an underutilized crop in the African continent. It is a drought tolerant crop and fixes atmospheric nitrogen. Bambara groundnut is primarily grown for the protein content of its seeds and is mainly produced by small scale farmers at subsistence level. The objective of the study was to assess the morphological variation of landraces of bambara groundnut in South Africa. Thirty accessions of bambara groundnut were evaluated for their variability in agronomic and morphological traits. The field experiment was conducted at ARC-VOPI in Roodeplaat research farm during the 2014/2015 summer cropping season. The field trial was arranged as a complete randomized block design with three replications. Eighteen quantitative traits were recorded to estimate the level of genetic variability among accessions. The analysis of variance revealed significant differences among the phenotypic traits evaluated. The UPGMA cluster analysis based on the quantitative traits produced four distinct groups of genotypes and a singleton. Genotypes SB11-1A, SB19-1A, SB12-3B and Bambara-12 were found to possess good vegetative characters and are recommended for use as suitable parents when breeding cultivars for fodder production. Desirable yield and yield-related traits were identified in B7-1, SB4-4C, SB19-1A, Bambara-12 and SB16-5A and are recommended as suitable parental lines for bambara groundnut grain production improvement. The phenotypic characters therefore provide a useful measure of genetic variability among bambara genotypes and will enable the identification of potential parental materials for future breeding programs in South Africa.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-31
Author(s):  
Md Mahmudul Hasan Khan ◽  
Mohd Y. Rafii ◽  
Shairul Izan Ramlee ◽  
Mashitah Jusoh ◽  
Al Mamun

Bambara groundnut (Vigna subterranea L. Verdc.) is considered an emerging crop for the future and known as a crop for the new millennium. The core intention of this research work was to estimate the variation of landraces of Bambara groundnut considering their 14 qualitative and 27 numerical traits, to discover the best genotype fitted in Malaysia. The findings of the ANOVA observed a highly significant variation ( p ≤ 0.01 ) for all the traits evaluated. There was a substantial variation (7.27 to 41.21%) coefficient value, and 14 out of the 27 numerical traits noted coefficient   of   variation   CV ≥ 20 % . Yield (kg/ha) disclosed positively strong to perfect high significant correlation ( r = 0.75 to 1.00; p ≤ 0.001 ) with traits like fresh pod weight, dry pod weight, and dry seed weight. The topmost PCV and GCV values were estimated for biomass dry (41.09%) and fresh (40.53%) weight with high heritability (Hb) and genetic advance (GA) Hb = 95.19 %, GA = 80.57 % and Hb = 98.52 %, GA = 82.86 %, respectively. The topmost heritability was recorded for fresh pod weight (99.89%) followed by yield (99.75%) with genetic advance 67.95% and 62.03%, respectively. The traits with Hb ≥ 60 % and G A ≥ 20 % suggested the least influenced by the environment as well as governed by the additive genes and direct selection for improvement of such traits can be beneficial. To estimate the genetic variability among accessions, the valuation of variance components, coefficients of variation, heritability, and genetic advance were calculated. To authenticate the genetic inequality, an unweighted pair group produced with arithmetic mean (UPGMA) and principal component analysis was executed based on their measurable traits that could be a steadfast method for judging the degree of diversity. Based on the UPGMA cluster analysis, constructed five distinct clusters and 44 accessions from clusters II and IV consider an elite type of genotypes that produce more than one ton yield per hectare land with desirable traits. This study exposed an extensive disparity among the landraces and the evidence on genetic relatives will be imperative in using the existing germplasm for Bambara groundnut varietal improvement. Moreover, this finding will be beneficial for breeders to choose the desirable numerical traits of V. subterranea in their future breeding program.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adré Minnaar-Ontong ◽  
Abe S. Gerrano ◽  
Maryke T. Labuschagne

AbstractWith its drought tolerant and protein-rich properties, Bambara groundnut [Vigna subterranea (L.) Verdc.], an indigenous African legume crop can contribute immensely to food security. This miracle crop is used as food and for the enhancement of soil fertility in South Africa. Knowledge on the genetic diversity and structure among the Bambara groundnut landraces can pave the way for the effective use and cultivation of this crop in southern Africa, especially South Africa. The aim of this study was to assess the genetic diversity and structure among Bambara groundnut landraces collected across South Africa and compared to a limited number of accessions from southern Africa using SSR markers. Seventy-eight Bambara groundnut accessions were genotyped using 19 Bambara specific SSR markers. SSR loci explored in this study, were all polymorphic. A total of 127 alleles were detected with a mean of 6.7 alleles per locus. Allele diversity and frequency among genotypes varied from 0.21 to 0.85 with an average of 0.62 per locus. Genetic variation as described by the analysis of molecular variance indicated higher genetic diversity (92%) within landraces than between (8%) different landraces. Population structure analysis showed that three subpopulations existed, and most of the South African accessions were restricted to one subpopulation, indicating that Bambara landraces has the ability to form unique haplotypes in different environments. Information harnessed in this study is helpful for further use in breeding programs for crop improvement.


2018 ◽  
Vol 30 (2) ◽  
pp. 19-28
Author(s):  
A. J. Oludare ◽  
J. I. Kioko ◽  
A. A. Akeem ◽  
A. T. Olumide ◽  
K. R. Justina ◽  
...  

Nine accessions of Bambara groundnut (Vigna subterranea (L.) Verdc.,syn. Voandzeia subterranea (L.) Thouars ex DC.)  obtained from National Centre for Genetic Resources and Biotechnology (NACGRAB), Ibadan, Oyo state, were assessed for their genetic and phylogenetic relatedness through electrophoretic analysis of the seed proteins. 0.2g of the seeds were weighed and macerated with mortar and pestle in 0.2M phosphate buffer containing 0.133M of acid (NaH2PO4) and 0.067 of base (Na2HPO4) at pH 6.5. Protein characterization with standard marker revealed that the seeds of the nine accessions contained proteins (B.S.A, Oval Albumin, Pepsinogen, Trypsinogen and Lysozyme) with molecular weights ranging from 66kda and above, 45 – 65 kDa, 44 – 33 kda, 32-24 kDa and 23-14 kDa, respectively. The student T-test revealed that accessions B, C, E, F, H and I have molecular weights not significantly different from one another (P<0.05) while samples A, D and G showed significantly different values (P>0.05). All the accessions had at least two proteins and two major bands in common. The study revealed intra-specific similarities and genetic diversity in protein contents among the nine accessions of Bambara groundnut (Vigna subterraranea (L.) Verdc.syn


Genome ◽  
2001 ◽  
Vol 44 (6) ◽  
pp. 995-999 ◽  
Author(s):  
H I Amadou ◽  
P J Bebeli ◽  
P J Kaltsikes

Random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm using 25 African accessions from the collection in the International Institute for Tropical Agriculture, Ibadan, Nigeria. Fifty random decamer primers were screened to assess their ability to detect polymorphism in bambara; 17 of them were selected for this study. Considerable genetic diversity was found among the V. subterranea accessions studied. The relationships among the 25 accessions were studied by cluster analysis. The dendrograms showed two main groups of accessions mainly along the lines of their geographic origin. It is concluded that RAPD can be used for germplasm classification in bambara groundnut and hence for improving this crop.Key words: germplasm, PCR, RAPD, Vigna subterranea.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204817 ◽  
Author(s):  
Juliet Mubaiwa ◽  
Vincenzo Fogliano ◽  
Cathrine Chidewe ◽  
Evert Jan Bakker ◽  
Anita R. Linnemann

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2668
Author(s):  
Zahid Nabi Sheikh ◽  
Vikas Sharma ◽  
Rafiq Ahmad Shah ◽  
Shilpa Raina ◽  
Maha Aljabri ◽  
...  

Apricot (Prunus armeniaca L.) is an important temperate fruit crop worldwide. The availability of wild apricot germplasm and its characterization through genomic studies can guide us towards its conservation, increasing productivity and nutritional composition. Therefore, in this study, we carried out the genomic characterization of 50 phenotypically variable accessions by using SSR markers in the erstwhile States of Jammu and Kashmir to reveal genetic variability among accessions and their genetic associations. The genetic parameter results revealed that the number of alleles per locus (Na) ranged from 1 to 6 with a mean Na value of 3.89 and the mean effective number of alleles (Ne) per locus 1.882 with a range of 1.22 to 2. Similarly, the polymorphic information content (PIC) values ranged from 0.464 to 0.104. The observed heterozygosity (Ho) (0.547) was found to have higher than expected heterozygosity (He) (0.453) with average heterozygosity of 0.4483. The dendrogram clustered genotypes into three main clades based on their pedigree. The population structure revealed IV sub-populations with all admixtures except the III sub-population, which was mainly formed of exotic cultivars. The average expected heterozygosity (He) and population differentiation within four sub-populations was 1.78 and 0.04, respectively, and explained 95.0% of the total genetic variance in the population. The results revealed that the SSR marker studies could easily decrypt the genetic variability present within the germplasm, which may form the base for the establishment of good gene banks by reducing redundancy of germplasm, selection of parents for any breeding program.


Sign in / Sign up

Export Citation Format

Share Document