Role of RNA Interference in Pest Management

Author(s):  
R. Asokan ◽  
Prakash M. Navale ◽  
N. K. Krishna Kumar ◽  
M. Manamohan
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1187
Author(s):  
Michael Wassenegger ◽  
Athanasios Dalakouras

Viroids are plant pathogenic, circular, non-coding, single-stranded RNAs (ssRNAs). Members of the Pospiviroidae family replicate in the nucleus of plant cells through double-stranded RNA (dsRNA) intermediates, thus triggering the host’s RNA interference (RNAi) machinery. In plants, the two RNAi pillars are Post-Transcriptional Gene Silencing (PTGS) and RNA-directed DNA Methylation (RdDM), and the latter has the potential to trigger Transcriptional Gene Silencing (TGS). Over the last three decades, the employment of viroid-based systems has immensely contributed to our understanding of both of these RNAi facets. In this review, we highlight the role of Pospiviroidae in the discovery of RdDM, expound the gradual elucidation through the years of the diverse array of RdDM’s mechanistic details and propose a revised RdDM model based on the cumulative amount of evidence from viroid and non-viroid systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan Willow ◽  
Liina Soonvald ◽  
Silva Sulg ◽  
Riina Kaasik ◽  
Ana Isabel Silva ◽  
...  

AbstractDouble-stranded RNAs (dsRNAs) represent a promising class of biosafe insecticidal compounds. We examined the ability to induce RNA interference (RNAi) in the pollen beetle Brassicogethes aeneus via anther feeding, and compared short-term (3 d) to chronic (17 d) feeding of various concentrations of dsRNA targeting αCOP (dsαCOP). In short-term dsαCOP feeding, only the highest concentration resulted in significant reductions in B. aeneus survival; whereas in chronic dsαCOP feeding, all three concentrations resulted in significant mortality. Chronic dsαCOP feeding also resulted in significantly greater mortality compared to short-term feeding of equivalent dsαCOP concentrations. Our results have implications for the economics and development of dsRNA spray approaches for managing crop pests, in that multiple lower-concentration dsRNA spray treatments across crop growth stages may result in greater pest management efficacy, compared to single treatments using higher dsRNA concentrations. Furthermore, our results highlight the need for research into the development of RNAi cultivars for oilseed rape protection, given the enhanced RNAi efficacy resulting from chronic, compared to short-term, dsRNA feeding in B. aeneus.


2012 ◽  
Vol 23 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Barbara Widmann ◽  
Franziska Wandrey ◽  
Lukas Badertscher ◽  
Emanuel Wyler ◽  
Jens Pfannstiel ◽  
...  

RIO proteins form a conserved family of atypical protein kinases. Humans possess three distinct RIO kinases—hRio1, hRio2, and hRio3, of which only hRio2 has been characterized with respect to its role in ribosomal biogenesis. Here we show that both hRio1 and hRio3, like hRio2, are associated with precursors of 40S ribosomal subunits in human cells. Furthermore, we demonstrate that depletion of hRio1 by RNA interference affects the last step of 18S rRNA maturation and causes defects in the recycling of several trans-acting factors (hEnp1, hRio2, hLtv1, hDim2/PNO1, and hNob1) from pre-40S subunits in the cytoplasm. Although the effects of hRio1 and hRio2 depletion are similar, we show that the two kinases are not fully interchangeable. Moreover, rescue experiments with a kinase-dead mutant of hRio1 revealed that the kinase activity of hRio1 is essential for the recycling of the endonuclease hNob1 and its binding partner hDim2 from cytoplasmic pre-40S. Kinase-dead hRio1 is trapped on pre-40S particles containing hDim2 and hNob1 but devoid of hEnp1, hLtv1, and hRio2. These data reveal a role of hRio1 in the final stages of cytoplasmic pre-40S maturation.


2005 ◽  
Vol 5 (14) ◽  
pp. 1-10 ◽  
Author(s):  
J. F. Brunner ◽  
E. H. Beers ◽  
J. E. Dunley ◽  
M. Doerr ◽  
K. Granger

2019 ◽  
Vol 461 ◽  
pp. 59-67 ◽  
Author(s):  
Fahad Al Basir ◽  
Arnab Banerjee ◽  
Santanu Ray

2022 ◽  
Vol 23 (2) ◽  
pp. 921
Author(s):  
Shang-Hung Lin ◽  
Ji-Chen Ho ◽  
Sung-Chou Li ◽  
Yu-Wen Cheng ◽  
Chung-Yuan Hsu ◽  
...  

Psoriatic arthritis (PsA) results from joint destruction by osteoclasts. The promising efficacy of TNF-α blockage indicates its important role in osteoclastogenesis of PsA. WNT ligands actively regulate osteoclastogenesis. We investigated how WNT ligands activate osteoclasts amid the TNF-α milieu in PsA. We first profiled the expression of WNT ligands in CD14+ monocyte-derived osteoclasts (MDOC) from five PsA patients and five healthy controls (HC) and then validated the candidate WNT ligands in 32 PsA patients and 16 HC. Through RNA interference against WNT ligands in MDOC, we determined the mechanisms by which TNF-α exerts its effects on osteclastogenesis or chemotaxis. WNT5A was selectively upregulated by TNF-α in MDOC from PsA patients. The number of CD68+WNT5A+ osteoclasts increased in PsA joints. CXCL1, CXCL16, and MCP-1 was selectively increased in supernatants of MDOC from PsA patients. RNA interference against WNT5A abolished the increased MCP-1 from MDOC and THP-1-cell-derived osteoclasts. The increased migration of osteoclast precursors (OCP) induced by supernatant from PsA MDOC was abolished by the MCP-1 neutralizing antibody. WNT5A and MCP-1 expressions were decreased in MDOC from PsA patients treated by biologics against TNF-α but not IL-17. We conclude that TNF-α recruits OCP by increased MCP-1 production but does not directly activate osteoclastogenesis in PsA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zezhong Yang ◽  
Cheng Gong ◽  
Yuan Hu ◽  
Jie Zhong ◽  
Jixing Xia ◽  
...  

Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.


Sign in / Sign up

Export Citation Format

Share Document