Timing Circuit Design in High Performance DRAM

2010 ◽  
pp. 337-360
Author(s):  
Feng Lin
2020 ◽  
Author(s):  
Neelam Swami ◽  
Bhupen Khatri

2019 ◽  
Vol 28 (05) ◽  
pp. 1950079 ◽  
Author(s):  
Trailokya Nath Sasamal ◽  
Ashutosh Kumar Singh ◽  
Umesh Ghanekar

Quantum-dot cellular automata (QCA) is one of the promising technologies that enable nanoscale circuit design with high performance and low-power consumption features. As memory cell and flip-flops are rudimentary for most of the digital circuits, having a high speed, and a less complex memory cell is significantly important. This paper presents novel architecture of D flip-flops and memory cell using a recently proposed five-input majority gate in QCA technology and simulated by QCADesigner tool version 2.0.3. The simulation results show that the proposed D flip-flops and the memory cell are more superior to the existing designs by considering the common design parameters. The proposed RAM cell spreads over an area of 0.12[Formula: see text][Formula: see text]m2and delay of 1.5 clock cycles. The proposed level-triggered, positive/negative edge-triggered, and dual edge-triggered D flip-flop uses 14%, 33%, and 21% less area, whereas the latency is 40%, 27%, and 25% less when compared to the previous best design. In addition, all the proposed designs are implemented in a single layer QCA and do not require any single or multilayer wire crossing.


Sign in / Sign up

Export Citation Format

Share Document