High Signal to Noise Observations with a Photon Counting Array

Author(s):  
A. W. Rodgers ◽  
P. Harding ◽  
G. Bloxham ◽  
M. S. Bessell
2014 ◽  
Vol 26 (15) ◽  
pp. 1495-1498 ◽  
Author(s):  
Zeyu Bao ◽  
Zhaohui Li ◽  
Yafan Shi ◽  
E. Wu ◽  
Guang Wu ◽  
...  

1988 ◽  
Vol 132 ◽  
pp. 23-25
Author(s):  
A. W. Rodgers ◽  
P. Harding ◽  
G. Bloxham ◽  
M. S. Bessell

A simple high speed image widener is described which allows effective count rates of up to 100hz to be achieved with photon counting detectors thus allowing rapid accumulation of high signal to noise data in bright star spectroscopy.


2017 ◽  
Vol 872 ◽  
pp. 354-359
Author(s):  
Long Hu Deng ◽  
Wei Feng Liu ◽  
Yi Jia Lu ◽  
Jia Cheng

Because the output signals of photon detectors are scattered under weak light, the single photon counting method uses pulse discrimination technique and digital counting technique to identify and count weak signals. Compared with analog recording technique, the single photon counting technique has the advantages of high signal-to-noise ratio and good anti drift performance. Discrimination voltage is an important part of single photon counting, which will greatly affect the signal to noise ratio (SNR). The selected process of discrimination voltage is very complicated, especially the number of photomultiplier tube spectral analysis system [1], discrimination voltage selection process more time-consuming. This paper presents a software for automatically searching voltage discrimination. The software can automatically measure the discrimination voltage of a plurality of photomultiplier tubes, greatly improve the efficiency and accuracy of screening voltage selection, and verify the effectiveness of the screening voltage software by calculating the signal-to-noise ratio.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2020 ◽  
Author(s):  
Rishikesh Kulkarni ◽  
Anneliese Gest ◽  
Chun Kei Lam ◽  
Benjamin Raliski ◽  
Feroz James ◽  
...  

<p>High signal-to-noise optical voltage indicators will enable simultaneous interrogation of membrane potential in large ensembles of neurons. However, design principles for voltage sensors with high sensitivity and brightness remain elusive, limiting the applicability of voltage imaging. In this paper, we use molecular dynamics (MD) simulations and density functional theory (DFT) calculations to guide the design of a bright and sensitive green-fluorescent voltage-sensitive fluorophore, or VoltageFluor (VF dye), that uses photoinduced electron transfer (PeT) as a voltage-sensing mechanism. MD simulations predict an 11% increase in sensitivity due to membrane orientation, while DFT calculations predict an increase in fluorescence quantum yield, but a decrease in sensitivity due to a decrease in rate of PeT. We confirm these predictions by synthesizing a new VF dye and demonstrating that it displays the expected improvements by doubling the brightness and retaining similar sensitivity to prior VF dyes. Combining theoretical predictions and experimental validation has resulted in the synthesis of the highest signal-to-noise green VF dye to date. We use this new voltage indicator to monitor the electrophysiological maturation of human embryonic stem cell-derived medium spiny neurons. </p>


2019 ◽  
Vol 15 (4) ◽  
pp. 443-466 ◽  
Author(s):  
Mahya Karami Mosammam ◽  
Mohammad Reza Ganjali ◽  
Mona Habibi-Kool-Gheshlaghi ◽  
Farnoush Faridbod

Background: Catecholamine drugs are a family of electroactive pharmaceutics, which are widely analyzed through electrochemical methods. However, for low level online determination and monitoring of these compounds, which is very important for clinical and biological studies, modified electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials have been widely used as electrode modifies for these families during the years. Among them, graphene and its family, due to their remarkable properties in electrochemistry, were extensively used in modification of electrochemical sensors. Objective: In this review, working electrodes which have been modified with graphene and its derivatives and applied for electroanalyses of some important catecholamine drugs are considered.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3443-3450 ◽  
Author(s):  
Wei-Nan Liu ◽  
Rui Chen ◽  
Wei-Yi Shi ◽  
Ke-Bo Zeng ◽  
Fu-Li Zhao ◽  
...  

AbstractSelective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications.


2016 ◽  
Vol 7 (2) ◽  
pp. 381 ◽  
Author(s):  
Lukas B. Gromann ◽  
Dirk Bequé ◽  
Kai Scherer ◽  
Konstantin Willer ◽  
Lorenz Birnbacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document