The Effects of Dietary Components on Brain Function

Author(s):  
Steven H. Zeisel
2021 ◽  
Author(s):  
Basista Rabina Sharma ◽  
Ravindra P. Veeranna

Research so far indicates that gut microbiome and diet interactions influence obesity, diabetes, host immunity, and brain function. The ability of athletes to perform to optimum for a more extended time, as well as the ability to resist, withstand, recover from, and have immunity to fatigue, injury depends on the genetic factor, age, sex, training history, psychological factors, mode, intensity and frequency of training and their interactions with the external dietary components. However, recent evidence indicates that the gut microbiome may also potentially influence the development of endurance in response to the type and composition of the external diet, including several food supplements. Thus, the gut microbiome has become another target in the athlete’s pursuit of optimal performance. This chapter discusses the effect of exercise on the gut microbiome, the interplay between dietary components and supplements on the gut microbiome, and its impact on endurance performance.


2020 ◽  
Author(s):  
Bo Ekstrand ◽  
Nathalie Scheers ◽  
Martin Krøyer Rasmussen ◽  
Jette Feveile Young ◽  
Alastair B Ross ◽  
...  

Abstract The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.


2020 ◽  
Vol 29 (11) ◽  
pp. 1463-1474
Author(s):  
Bryna Rackerby ◽  
Hyun Jung Kim ◽  
David C. Dallas ◽  
Si Hong Park

AbstractThe gut microbiome is the complex microbial ecosystem found in the gastrointestinal tract of humans and animals. It plays a vital role in host development, physiology and metabolism, and has been implicated as a factor in brain function, behavior, mental health, and many disease states. While many factors, including host genetics and environmental factors, contribute to the composition of the gut microbiome, diet plays a large role. Microorganisms differ in their nutrient requirements, and alterations in host dietary composition can have strong impacts on the microbial inhabitants of the gastrointestinal tract. The health implications of these dietary and microbial changes are relevant as various global populations consume diets comprised of different macronutrient ratios, and many diets promote alterations to recommended macronutrient ratios to promote health. This review will outline the ways in which specific macro- and micronutrients impact the gut microbiome and host health.


2020 ◽  
Vol 43 ◽  
Author(s):  
Martina G. Vilas ◽  
Lucia Melloni

Abstract To become a unifying theory of brain function, predictive processing (PP) must accommodate its rich representational diversity. Gilead et al. claim such diversity requires a multi-process theory, and thus is out of reach for PP, which postulates a universal canonical computation. We contend this argument and instead propose that PP fails to account for the experiential level of representations.


Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


2005 ◽  
Vol 38 (24) ◽  
pp. 18
Author(s):  
MARY ELLEN SCHNEIDER
Keyword(s):  

2017 ◽  
Vol 225 (3) ◽  
pp. 175-188 ◽  
Author(s):  
Peter J. Lang ◽  
Lisa M. McTeague ◽  
Margaret M. Bradley

Abstract. Several decades of research are reviewed, assessing patterns of psychophysiological reactivity in anxiety patients responding to a fear/threat imagery challenge. Findings show substantive differences in these measures within principal diagnostic categories, questioning the reliability and categorical specificity of current diagnostic systems. Following a new research framework (US National Institute of Mental Health [NIMH], Research Domain Criteria [RDoC]; Cuthbert & Insel, 2013 ), dimensional patterns of physiological reactivity are explored in a large sample of anxiety and mood disorder patients. Patients’ responses (e.g., startle reflex, heart rate) during fear/threat imagery varied significantly with higher questionnaire measured “negative affect,” stress history, and overall life dysfunction – bio-marking disorder groups, independent of Diagnostic and Statistical Manuals (DSM). The review concludes with a description of new research, currently underway, exploring brain function indices (structure activation, circuit connectivity) as potential biological classifiers (collectively with the reflex physiology) of anxiety and mood pathology.


1989 ◽  
Vol 34 (8) ◽  
pp. 801-801
Author(s):  
No authorship indicated
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document