Thin Film Deposition By Sol-Gel and CVD Processing of Metal-Organic Precursors

Author(s):  
S. Mathur
2007 ◽  
Vol 1007 ◽  
Author(s):  
Theodosia Gougousi ◽  
Zhiying Chen

ABSTRACTA novel chemical route in thin film formation that includes the use of inorganic and organic peroxides and metal organic complexes soluble in supercritical carbon dioxide has been investigated for the deposition of alumina, titania and zirconia thin films at low temperatures (<150°C). The metal organic precursors used include: Al(acac)3, OTi(tmhd)2, and Zr(acac)4. Tert-butyl peroxide, and a 30% aqueous solution of hydrogen peroxide were used as oxidants. Depositions were carried out in a 25 ml hot wall reactor at pressures ranging from 2100 to 3900 psi at 80-140°C. The deposited thin films were investigated by using X-ray photoelectron spectroscopy (XPS) and transmission Fourier transform infrared spectroscopy (FTIR). XPS and FTIR results indicate the formation of metal oxides thin films with some bonded carbon. The deposition temperatures achieved in this process are substantially lower than those used in conventional vacuum deposition techniques making feasible the deposition on temperature sensitive substrates and organic materials required for the development of hybrid organic/inorganic devices. Processing at low temperatures in supercritical carbon dioxide may provide the basis for the development of an alternative, environmentally friendly, thin film deposition technique for the processing of nanostructures.


2010 ◽  
Vol 55 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Dayene M. Carvalho ◽  
Jorge L. B. Maciel ◽  
Leandro P. Ravaro ◽  
Rogério E. Garcia ◽  
Valdemir G. Ferreira ◽  
...  

2001 ◽  
Vol 16 (4) ◽  
pp. 463-473 ◽  
Author(s):  
M. Langlet ◽  
C. Coutier ◽  
J. Fick ◽  
M. Audier ◽  
W. Meffre ◽  
...  

2016 ◽  
Vol 773 ◽  
pp. 012112 ◽  
Author(s):  
A Li ◽  
J Wang ◽  
W Zhang ◽  
R McNaughton ◽  
S Anderson ◽  
...  

2008 ◽  
Vol 1113 ◽  
Author(s):  
Takeyasu Saito ◽  
Yuichiro Hirota ◽  
Mariko Ooyanagi ◽  
Naoki Okamoto ◽  
Kazuo Kondo ◽  
...  

ABSTRACTCaBi4Ti4O15 growth on different Platinum substrates was carried out through a sol-gel method. Higher crystallization temperature and 20% excess Bi decreased pyrochlore contents in the CaBi4Ti4O15 films. Repetition through coating, calcination and crystallization decreased void formation on the surface. C-axis oriented thin film could be grown on sputtered platinum substrates with low Pt (200) orientation. On electroplated Pt substrates, (119) oriented CaBi4Ti4O15 thin film was grown, suggesting surface roughness of Pt substrates is a crucial factor for orientation control of sol-gel derived CaBi4Ti4O15 thin film.


2008 ◽  
Vol 388 ◽  
pp. 179-182 ◽  
Author(s):  
Rintarou Morohashi ◽  
Naoki Wakiya ◽  
Takanori Kiguchi ◽  
Tomohiko Yoshioka ◽  
M. Tanaka ◽  
...  

Lithium niobate (LiNbO3) thin films were deposited on Al2O3(001) substrates using metal-organic chemical vapor deposition (MOCVD), with Li(dpm) and Nb(C2H5)5 as precursors. By optimizing the conditions of thin film deposition, the c-axis oriented and epitaxially grown LiNbO3 thin films with stoichiometric composition were deposited on an Al2O3(001) substrate. The refractive index of the stoichiometric LiNbO3 thin film was 2.24 at = 632.8 nm, which is close to that of bulk crystal.


1994 ◽  
Vol 2 (1-3) ◽  
pp. 477-481 ◽  
Author(s):  
F. Nishida ◽  
B. Dunn ◽  
J. M. Mckiernan ◽  
J. I. Zink ◽  
C. J. Brinker ◽  
...  

2017 ◽  
Vol 8 ◽  
pp. 1049-1055 ◽  
Author(s):  
Sun-Kyu Lee ◽  
Sori Hwang ◽  
Yoon-Kee Kim ◽  
Yong-Jun Oh

We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.


Sign in / Sign up

Export Citation Format

Share Document