Influence of Light Conditions, Gassing and Inhibitors on Photophosphorylation and ATP-Level in Anacystis Nidulans

Author(s):  
T. Bornefeld ◽  
J. Domanski ◽  
W. Simonis
1981 ◽  
Vol 36 (9-10) ◽  
pp. 907-909
Author(s):  
Günter Döhler ◽  
Ralf Barckhausen ◽  
Manfred Ruppel

Abstract Synechococcus (Anacystis nidulans, strain L 1402-1) were grown at + 37 °C in an atmosphere of 0.04 vol.% CO2 using different light conditions. Changing the culture conditions caused alterations in pigment ratios and ultrastructure of Synechococcus. In comparison to the low white and red light grown cells under strong white light the number of thylakoids decreased and an accumulation of storage carbohydrates could be observed. The number of the polyhedral bodies also varied with culture conditions. The results are discussed with reference to the pigment composition and the function of the polyhedral bodies.


1982 ◽  
Vol 37 (11-12) ◽  
pp. 1075-1080 ◽  
Author(s):  
Günter Döhler ◽  
Jean-Claude Leclerc

Abstract The cyanobacterium Synechococcus (Anacystis nidulans, strain L 1401-1) grown under different light conditions showed variations in pigmentation. Ratios of photosynthetic pigments and the effect on quantum requirement and oxygen evolution were studied. An increase in the ratio of chlorophyll a forms with absorption maxima in the far red regime to total chlorophyll a forms was observed in cells grown in strong white light. The quantum efficiency of orange light (637 nm) - absorbed by phycocyanin - was higher after growth of Synechococcus in white than


2018 ◽  
Author(s):  
Kenji Katayama ◽  
Momona Seki ◽  
Kayoko Tokumitsu ◽  
Woon Yong Sohn

The photocatalytic microchip was demonstrated as an efficient platform of the photocatalytic organic reactions, which features an easy control of the reaction time and light conditions. We demonstrated the photocatalytic decarboxylation and the following adduct reaction inside the microchip and successfully achieved high yields of the products.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article deals with the issues related to the problem of ballistic design of the space system of remote sensing of the Earth on stable near-circular solar-synchronous orbits with long-term existence of spacecraft. We propose a rational method of maintaining a solar-synchronous orbit in given light conditions with prolonged active lifetime of space systems. In solving this problem, the total time of normal operation of the system for a given period of operation, during which the most favorable conditions for the use of spacecraft are provided on the main parts of orbits, is taken as a target function.


Sign in / Sign up

Export Citation Format

Share Document