Molecular Dynamics Simulation of Atomic-Scale Adhesion, Deformation, Friction, and Modification of Diamond Surfaces

1995 ◽  
pp. 175-181
Author(s):  
J. A. Harrison ◽  
S. B. Sinnott ◽  
C. T. White ◽  
D. W. Brenner ◽  
R. J. Colton
Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

Fundamental understanding of the water in graphene is crucial to optimally design and operate the sustainable energy, water desalination, and bio-medical systems. A numerous atomic-scale studies have been reported, primarily articulating the surface interactions (interatomic potentials) between the water and graphene. However, a systematic comparative study among the various interatomic potentials is rare, especially for the water transport confined in the graphene nanostructure. In this study, the effects of different interatomic potentials and gap sizes on water self-diffusivity are investigated using the molecular dynamics simulation at T = 300 K. The water is confined in the rigid graphene nanogap with the various gap sizes Lz = 0.7 to 4.17 nm, using SPC/E and TIP3P water models. The water self-diffusivity is calculated using the mean squared displacement approach. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. Also, the water self-diffusivity nearly linearly decreases with the increasing surface energy to reach the bulk water self-diffusivity at zero surface energy. The obtained results provide a roadmap to fundamentally understand the water transport properties in the graphene geometries and surface interactions.


2016 ◽  
Vol 683 ◽  
pp. 626-631 ◽  
Author(s):  
Ivan Konovalenko ◽  
Igor S. Konovalenko ◽  
Andrey Dmitriev ◽  
Serguey Psakhie ◽  
Evgeny A. Kolubaev

Mass transfer has been studied at atomic scale by molecular dynamics simulation of friction stir welding and vibration-assisted friction stir welding using the modified embedded atom potential. It was shown that increasing the velocity movement and decreasing the angle velocity of the tool reduce the penetration depth of atoms into the opposite crystallite in the connected pair of metals. It was shown also that increasing the amplitude of vibrations applied to the friction stir welding tool results in increasing the interpenetration of atoms belonging to the crystallites joined


2000 ◽  
Vol 61 (20) ◽  
pp. 14007-14019 ◽  
Author(s):  
R. Komanduri ◽  
N. Chandrasekaran ◽  
L. M. Raff

2021 ◽  
Vol 8 ◽  
Author(s):  
Lingjun Wu ◽  
Wei Wang ◽  
Haitao Zhao ◽  
Libo Gao ◽  
Jibao Lu ◽  
...  

Inkjet printing-based 2D materials for flexible electronics have aroused much interest due to their highly low-cost customization and manufacturing resolution. However, there is a lack of investigation and essential understanding of the surface adhesion affected by the printing parameters at the atomic scale. Herein, we conducted a systematic molecular dynamics simulation investigating the inkjet printing of graphitic inks on polyimide substrates under various conditions. Simulations under different temperatures, inkjet velocities, and mechanical loadings such as pressure and deformation are performed. The results show that the best adhesion is achieved in the plasma-modified polyimide/graphene-oxide (mPI/GO) interfacial system (the interaction energy (Ein) between mPI and GO is ca. 1.2 times than with graphene). The adhesion strength decreases with increasing temperature, and higher inkjet velocities lead to both larger impact force as well as interfacial fluctuation, while the latter may result in greater interfacial instability. When loaded with pressure, the adhesion strength reaches a threshold without further improvement as continuing compacting of polymer slabs can hardly be achieved. The detachment of the interfaces was also explored and mPI/GO shows better resistance against delamination. Hopefully, our simulation study paves the way for future inkjet printing-based manufacturing of graphene-based flexible electronics.


2004 ◽  
Vol 471-472 ◽  
pp. 144-148 ◽  
Author(s):  
Hui Wu ◽  
Bin Lin ◽  
S.Y. Yu ◽  
Hong Tao Zhu

Molecular dynamics (MD) simulation can play a significant role in addressing a number of machining problems at the atomic scale. This simulation, unlike other simulation techniques, can provide new data and insights on nanometric machining; which cannot be obtained readily in any other theory or experiment. In this paper, some fundamental problems of mechanism are investigated in the nanometric cutting with the aid of molecular dynamics simulation, and the single-crystal silicon is chosen as the material. The study showed that the purely elastic deformation took place in a very narrow range in the initial stage of process of nanometric cutting. Shortly after that, dislocation appeared. And then, amorphous silicon came into being under high hydrostatic pressure. Significant change of volume of silicon specimen is observed, and it is considered that the change occur attribute to phase transition from a diamond silicon to a body-centered tetragonal silicon. The study also indicated that the temperature distributing of silicon in nanometric machining exhibited similarity to conventional machining.


Sign in / Sign up

Export Citation Format

Share Document