Electrical Characterization Techniques for Silicon on Insulator Materials and Devices

Author(s):  
Sorin Cristoloveanu
Author(s):  
Z. G. Song ◽  
S. K. Loh ◽  
X. H. Zheng ◽  
S.P. Neo ◽  
C. K. Oh

Abstract This article presents two cases to demonstrate the application of focused ion beam (FIB) circuit edit in analysis of memory failure of silicon on insulator (SOI) devices using XTEM and EDX analyses. The first case was a single bit failure of SRAM units manufactured with 90 nm technology in SOI wafer. The second case was the whole column failure with a single bit pass for a SRAM unit. From the results, it was concluded that FIB circuit edit and electrical characterization is a good methodology for further narrowing down the defective location of memory failure, especially for SOI technology, where contact-level passive voltage contrast is not suitable.


Author(s):  
Pei Y. Tsai ◽  
Junedong Lee ◽  
Paul Ronsheim ◽  
Lindsay Burns ◽  
Richard Murphy ◽  
...  

Abstract A stringent sampling plan is developed to monitor and improve the quality of 300mm SOI (silicon on insulator) starting wafers procured from the suppliers. The ultimate goal is to obtain the defect free wafers for device fabrication and increase yield and circuit performance of the semiconductor integrated circuits. This paper presents various characterization techniques for QC monitor and examples of the typical defects attributed to wafer manufacturing processes.


2020 ◽  
Vol 15 (1) ◽  
pp. 1-6
Author(s):  
Ricardo Cardoso Rangel ◽  
Katia R. A. Sasaki ◽  
Leonardo Shimizu Yojo ◽  
João Antonio Martino

This work analyzes the third generation BESOI MOSFET (Back-Enhanced Silicon-On-Insulator Metal-Oxide-Semiconductor Field-Effect-transistor) built on UTBB (Ultra-Thin Body and Buried Oxide), comparing it to the BESOI with thick buried oxide (first generation). The stronger coupling between front and back interfaces of the UTBB BESOI device improves in 67% the current drive, 122% the maximum transconductance and 223% the body factor. Operating with seven times lower back gate bias, the UTBB BESOI MOSFET presented more compatibility with standard SOI CMOS (Complementary MOS) technology than the BESOI with thick buried oxide.


Sign in / Sign up

Export Citation Format

Share Document