Characterization of Non-AA Proteins in Amyloid Fibrils Obtained from a Cow with Chronic Infection

1991 ◽  
pp. 551-554 ◽  
Author(s):  
O. P. Veiby ◽  
K. Sletten ◽  
G. Husby ◽  
K. Nordstoga
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoto Kamagata ◽  
Rika Chiba ◽  
Ichiro Kawahata ◽  
Nanako Iwaki ◽  
Saori Kanbayashi ◽  
...  

AbstractLiquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino acid additives and polymerization of the identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with specific residues of FUS, thereby inhibiting the cation–π and electrostatic interactions between the FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of proteins.


2021 ◽  
Vol 22 (4) ◽  
pp. 1800
Author(s):  
Kun-Hua Yu ◽  
Mei-Yu Huang ◽  
Yi-Ru Lee ◽  
Yu-Kie Lin ◽  
Hau-Ren Chen ◽  
...  

Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.


2015 ◽  
Vol 10 (03) ◽  
pp. 135-156 ◽  
Author(s):  
Valeriya M. Trusova

Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.


2018 ◽  
Vol 115 (28) ◽  
pp. 7230-7235 ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Fabrizio Benedetti ◽  
Tuomas P. J. Knowles ◽  
Hilal A. Lashuel ◽  
Sergey Sekatskii ◽  
...  

The formation and spreading of amyloid aggregates from the presynaptic protein α-synuclein in the brain play central roles in the pathogenesis of Parkinson’s disease. Here, we use high-resolution atomic force microscopy to investigate the early oligomerization events of α-synuclein with single monomer angstrom resolution. We identify, visualize, and characterize directly the smallest elementary unit in the hierarchical assembly of amyloid fibrils, termed here single-strand protofilaments. We show that protofilaments form from the direct molecular assembly of unfolded monomeric α-synuclein polypeptide chains. To unravel protofilaments’ internal structure and elastic properties, we manipulated nanomechanically these species by atomic force spectroscopy. The single-molecule scale identification and characterization of the fundamental unit of amyloid assemblies provide insights into early events underlying their formation and shed light on opportunities for therapeutic intervention at the early stages of aberrant protein self-assembly.


2006 ◽  
Vol 103 (43) ◽  
pp. 15806-15811 ◽  
Author(s):  
J. F. Smith ◽  
T. P. J. Knowles ◽  
C. M. Dobson ◽  
C. E. MacPhee ◽  
M. E. Welland
Keyword(s):  

The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 4967-4980 ◽  
Author(s):  
Dmitry Kurouski ◽  
Richard P. Van Duyne ◽  
Igor K. Lednev

Applications of Raman spectroscopy, a label-free non-destructive technique, for the structural characterization of amyloidogenic proteins, prefibrilar oligomers, and mature fibrils.


2015 ◽  
Vol 137 (23) ◽  
pp. 7509-7518 ◽  
Author(s):  
Michael T. Colvin ◽  
Robert Silvers ◽  
Birgitta Frohm ◽  
Yongchao Su ◽  
Sara Linse ◽  
...  

2020 ◽  
Author(s):  
Emma Cawood ◽  
Nicolas Guthertz ◽  
Jessica Ebo ◽  
Theodoros Karamanos ◽  
Sheena E. Radford FRS ◽  
...  

<p></p><p>Protein-protein interactions (PPIs) are involved in many of life’s essential biological functions yet are also an underlying cause of several human diseases, including amyloidosis. The modulation of PPIs presents opportunities to gain mechanistic insights into amyloid assembly, particularly through the use of methods which can trap specific intermediates for detailed study. Such information can also provide a starting point for drug discovery. Here, we demonstrate that covalently tethered small molecule fragments can be used to stabilize specific oligomers during amyloid fibril formation, facilitating the structural characterization of these assembly intermediates. We exemplify the power of covalent tethering using the naturally occurring truncated variant (ΔN6) of the human protein β2-microglobulin (β2m), which assembles into amyloid fibrils associated with dialysis-related amyloidosis. Using this approach, we have trapped tetramers formed by ΔN6 under conditions which would normally lead to fibril formation and found that the degree of tetramer stabilization depends on the site of the covalent tether and the nature of the protein-fragment interaction. The covalent protein-ligand linkage enabled structural characterization of these trapped oligomeric species using X-ray crystallography and NMR, providing insight into why tetramer stabilization inhibits amyloid assembly. Our findings highlight the power of “post-translational chemical modification" as a tool to study biological molecular mechanisms. </p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document