Protein-Protein Interactions in Ethylene Signal Transduction in Arabidopsis

Author(s):  
C. Chang ◽  
P. B. Larsen ◽  
K. L. Clark ◽  
C.-K. Wen ◽  
W. Ding ◽  
...  
2007 ◽  
Vol 58 (13) ◽  
pp. 3631-3643 ◽  
Author(s):  
I. El-Sharkawy ◽  
W. S. Kim ◽  
A. El-Kereamy ◽  
S. Jayasankar ◽  
A. M. Svircev ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 2920-2932 ◽  
Author(s):  
Goran Jovanovic ◽  
Christoph Engl ◽  
Antony J. Mayhew ◽  
Patricia C. Burrows ◽  
Martin Buck

The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ 54-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF–A–C–B–ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein–protein interactions, resulting in the release of the PspA–PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.


2005 ◽  
Vol 83 (6) ◽  
pp. 563-570 ◽  
Author(s):  
Michael G Mason ◽  
G Eric Schaller

Ethylene is a gaseous hormone that regulates many aspects of plant growth and development. Although the effect of ethylene on plant growth was discovered a century ago, the key players in the ethylene response pathway were only identified over the last 15 years. In Arabidopsis, ethylene is perceived by a family of five receptors (ETR1, ETR2, ERS1, ERS2, and EIN4) that resemble two-component histidine kinases. Of these, only ETR1 and ERS1 contain all the conserved residues required for histidine kinase activity. The ethylene receptors appear to function primarily through CTR1, a serine/threonine kinase that actively suppresses ethylene responses in air (absence of ethylene). Despite recent progress toward understanding ethylene signal transduction, the role of the ethylene-receptor histidine-kinase activity remains unclear. This review considers the significance of histidine kinase activity in ethylene signaling and possible mechanisms by which it may modulate ethylene responses.Key words: ethylene receptor, ETR1, histidine kinase, two-component, phosphorylation, Arabidopsis.


Physiology ◽  
2005 ◽  
Vol 20 (4) ◽  
pp. 218-224 ◽  
Author(s):  
Shoshana Levy ◽  
Tsipi Shoham

Tetraspanins are evolutionarily conserved membrane proteins that tend to associate laterally with one another and to cluster dynamically with numerous partner proteins in membrane microdomains. Consequently, members of this family are involved in the coordination of intracellular and intercellular processes, including signal transduction; cell proliferation, adhesion, and migration; cell fusion; and host-parasite interactions.


1990 ◽  
Vol 87 (21) ◽  
pp. 8622-8626 ◽  
Author(s):  
M. F. Moran ◽  
C. A. Koch ◽  
D. Anderson ◽  
C. Ellis ◽  
L. England ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document