scholarly journals A Method to Assess the Impact of High Tides, Storms and Storm Surges as Vital Elements in Climatic History the Case of Stormy Weather and Dikes in the Northern Part of Flanders, 1488 to 1609

Author(s):  
A. M. J. De Kraker
Author(s):  
Rikito Hisamatsu ◽  
Rikito Hisamatsu ◽  
Kei Horie ◽  
Kei Horie

Container yards tend to be located along waterfronts that are exposed to high risk of storm surges. However, risk assessment tools such as vulnerability functions and risk maps for containers have not been sufficiently developed. In addition, damage due to storm surges is expected to increase owing to global warming. This paper aims to assess storm surge impact due to global warming for containers located at three major bays in Japan. First, we developed vulnerability functions for containers against storm surges using an engineering approach. Second, we simulated storm surges at three major bays using the SuWAT model and taking global warming into account. Finally, we developed storm surge risk maps for containers based on current and future situations using the vulnerability function and simulated inundation depth. As a result, we revealed the impact of global warming on storm surge risks for containers quantitatively.


2021 ◽  
Vol 9 (11) ◽  
pp. 1222
Author(s):  
Yutao Chi ◽  
Zengrui Rong

Disastrous storm surges and waves caused by typhoons are major marine dynamic disasters affecting the east China coast and the Changjiang River Estuary, especially when they occur coincidentally. In this study, a high-resolution wave–current coupled model consisting of ADCIRC (Advanced Circulation) and SWAN (Simulating Waves Nearshore) was established and validated. The model shows reasonable skills in reproducing the surge levels and waves. The storm surges and associated waves are then simulated for 98 typhoons affecting the Changjiang River Estuary over the past 32 years (1987–2018). Two different wind fields, the ERA reanalysis and the ERA-based synthetic wind with a theoretical typhoon model, were adopted to discern the potential uncertainties associated with winds. Model results forced by the ERA reanalysis show comparative skills with the synthetic winds, but differences may be relatively large in specific stations. The extreme surge levels with a 50-year return period are then presented based on the coupled model results and the Gumbel distribution model. Higher risk is presented in Hangzhou Bay and the nearshore region along the coast of Zhejiang. Comparative runs with and without wave effects were conducted to discern the impact of waves on the extreme surge levels. The wave setup contributes to 2–12.5% of the 50-year extreme surge level. Furthermore, the joint exceedance probabilities of high surge levels and high wave height were evaluated with the Gumbel–logistic statistic model. Given the same joint return period, the nearshore region along the coast of Zhejiang is more vulnerable with high surges and large waves than the Changjiang River Estuary with large waves and moderate surges.


Author(s):  
A.-L. Montreuil ◽  
M. Chen ◽  
A. Esquerré ◽  
R. Houthuys ◽  
R. Moelans ◽  
...  

<p><strong>Abstract.</strong> Sustainable management of the coastal resources requires a better understanding of the processes that drive coastline change. The coastline is a highly dynamic sea-terrestrial interface. It is affected by forcing factors such as water levels, waves, winds, and the highest and most severe changes occur during storm surges. Extreme storms are drivers responsible for rapid and sometimes dramatic changes of the coastline. The consequences of the impacts from these events entail a broad range of social, economic and natural resource considerations from threats to humans, infrastructure and habitats. This study investigates the impact of a severe storm on coastline response on a sandy multi-barred beach at the Belgian coast. Airborne LiDAR surveys acquired pre- and post-storm covering an area larger than 1 km<sup>2</sup> were analyzed and reproducible monitoring solutions adapted to assess beach morphological changes were applied. Results indicated that the coast retreated by a maximum of 14.7 m where the embryo dunes in front of the fixed dunes were vanished and the foredune undercut. Storm surge and wave attacks were probably the most energetic there. However, the response of the coastline proxies associated with the mean high water line (MHW) and dunetoe (DuneT) was spatially variable. Based on the extracted beach features, good correlations (r>0.73) were found between coastline, berm and inner intertidal bar morphology, while it was weak with the most seaward bars covered in the surveys. This highlights the role of the upper features on the beach to protect the coastline from storm erosion by reducing wave energy. The findings are of critical importance in improving our knowledge and forecasting of coastline response to storms, and also in its translation into management practices.</p>


2021 ◽  
Author(s):  
Karine Bastos Leal ◽  
Luís Eduardo de Souza Robaina ◽  
André de Souza De Lima

Abstract An increase in the global mean sea is predicted during the 21st century as a consequence of global average temperature projections. In addition, changes in the strength of atmospheric cyclonic storms may alter the development of storm surges, exacerbating the risks to coastal communities. Based on the fact that the interest and range of papers are growing on this topic, this study aims to present the global scientific production status of studies that have correlated climate change and the impact of storm surges on the coastal zone leading to erosion and flooding (inundation) via a bibliometric analysis. We analyzed 429 papers published in journals between 1991 and February 2021 from the Scopus database. Through the VOSviewer and Bibliometrix R package, we describe the most relevant countries, affiliations, journals, authors, and keywords. Our results demonstrate that there has been an exponential growth in the research topic, and that authors from the United States and the United Kingdom are the most prolific. Among the 1454 authors found, 10 researchers published at least 5 papers on the topic and obtained at least 453 citations in the period. The most represented journals were the Journal of Coastal Research, Climatic Change, and Natural Hazards. We also found, and discuss, the lack of standardization in the choice of keywords, of which climate change, storm surge, and sea level rise are the most frequent. Finally, we have written a guide to facilitate the authors' bibliographic review.


Author(s):  
Q. Li ◽  
X. Hao ◽  
W. Wang ◽  
A. Wu ◽  
Z. Xie

The adverse weather may significantly impact urban traffic speed and travel time. Understanding the influence of the rainstorm to urban traffic speed is of great importance for traffic management under stormy weather. This study aims to investigate the impact of rainfall intensity on traffic speed in the Shenzhen (China) during the period 1 July 2015&amp;ndash;31 August 2016. The analysis was carried out for five 1-h periods on weekdays during the morning periods (6:00 AM&amp;ndash;11:00 AM). Taxi-enabled GPS tracking data obtained from Shenzhen city are used in the analysis. There are several findings in this study. Firstly, nearly half of the roads are significantly affected by the rainstorm. Secondly, the proportion of positive correlated roads is about 35&amp;thinsp;%, but there still are some roads with uncorrelated traffic speed variation rates (SVR) and rainfall intensities. Thirdly, the impact of the rainstorm on traffic speed is not homogeneous but with obvious spatial difference. This research provides useful information that can be used in traffic management on a city-wide scale under stormy weather.


2021 ◽  
pp. 1-55
Author(s):  
Yangchen Lai ◽  
Jianfeng Li ◽  
Xihui Gu ◽  
Cancan Liu ◽  
Yongqin David Chen

AbstractDuring simultaneous or successive occurrences of precipitation and storm surges, the interplay of the two types of extremes can exacerbate the impact to a greater extent than either of them in isolation. The compound flood hazards from precipitation and storm surges vary across regions of the world because of the various weather conditions. By analyzing in-situ observations of precipitation and storm surges across the globe, we found that the return periods of compound floods with marginal values exceeding the 98.5th percentile (i.e., equivalent to a joint return period of 12 years if the marginal variables are independent) are < 2 years in most areas, while those in northern Europe are > 8 years due to weaker dependence. Our quantitative assessment shows that cyclones (i.e., tropical cyclones (TCs) and extratropical cyclones (ETCs)) are the major triggers of compound floods. More than 80% of compound floods in East Asia and > 50% of those in the Gulf of Mexico and northern Australia are associated with TCs, while in northern Europe and the higher latitude coast of North America, ETCs contribute to the majority of compound floods (i.e., 80%). Weather patterns characterized by deep low pressure, cyclonic wind, and abundant precipitable water content are conducive to the occurrence of compound floods. Extreme precipitation and extreme storm surges over Europe tend to occur in different months, which explains the relatively lower probability of compound floods in Europe. The comprehensive hazard assessment of global compound floods in this study serves as an important reference for flood risk management in coastal regions across the globe.


2019 ◽  
Vol 2 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Shuai Cong ◽  
Xiao Wu ◽  
Yong Zhang ◽  
Biying Xue ◽  
Houjie Wang

The province of Fujian on China’s southeast coast is severely impacted by typhoons. Based on coastal profile monitoring and 40 years of satellite data, this paper analyzed the response of coastal profiles to natural and anthropogenic forces along the northern part of Fujian’s coast. Results indicated that the pattern of coastal evolution differed largely on cross-shore profiles and longshore coastlines. Only a few sandy coasts were severely affected by extreme weather events in summer, such as typhoons and storm surges, which may result from the wind direction relative to the coast. The cross-shore profiles changed drastically while the mean high-water coastline remained stable. In contrast, anthropogenic forces had a dual effect due to artificial sand extraction and reclamation. Artificial sand extraction usually occurred on sandy coasts, resulting in a decrease in some local surface profiles of tens of centimeters to metres in two years. Reclamation had the main impact on muddy coasts, especially in bays, causing seaward progradation during the past 40 years. The impacts of human activities on muddy coasts were far greater than natural factors. Findings from our coastal monitoring study for both sandy and muddy coasts provide an important scientific basis for practical applications, such as Fujian coastal protection, coastal zone exploitation, and utilization planning.


2019 ◽  
Vol 7 (5) ◽  
pp. 140 ◽  
Author(s):  
Rameeza Moideen ◽  
Manasa Ranjan Behera ◽  
Arun Kamath ◽  
Hans Bihs

Coastal bridge damage has become a severe issue of concern in the recent past with the destruction of a considerable number of bridges under the impact of waves during tsunami and storm surges. These events have become more frequent, with waves reaching the bridge deck and causing upliftment and destruction. Past studies have demonstrated the establishment of various theoretical equations which works well for the submerged deck and regular wave types but show much scatter and uncertainty in case of a deck that is above still water level (SWL). The present study aims to generate a solitary wave to represent an extreme wave condition like a tsunami in the numerical wave tank modeled using the open source computational fluid dynamics (CFD) model REEF3D and to study the vertical impact force on the coastal bridge deck. A parametric study is carried out for increasing wave heights, girders spacing and depth for varying airgaps to analyze the effect of these parameters on the peak vertical impact force. It is observed that increasing the girder spacing and girder depth is effective in reducing the peak vertical impact force for the cases considered.


2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


Author(s):  
Christopher Thomas ◽  
Siddharth Narayan ◽  
Joss Matthewman ◽  
Christine Shepard ◽  
Laura Geselbracht ◽  
...  

&lt;p&gt;With coastlines becoming increasingly urbanised worldwide, the economic risk posed by storm surges to coastal communities has never been greater. Given the financial and ecological costs of manmade coastal defences, the past few years have seen growing interest in the effectiveness of natural coastal &amp;#8220;defences&amp;#8221; in reducing the risk of flooding to coastal properties, but estimating their actual economic value in reducing storm surge risk remains a challenging subject.&lt;/p&gt;&lt;p&gt;In this study, we estimate the value of mangroves in reducing annual losses to property from storm surges along a large stretch of coastline in Florida (USA), by employing a catastrophe modelling approach widely used in the insurance industry. We use a hydrodynamic coastal flood model coupled to a property loss model and a large property exposure dataset to estimate annual economic losses from hurricane-driven storm surges in Collier County, a hurricane-prone part of Florida. We then estimate the impact that removing mangroves in the region would have on average annual losses (AAL) caused by coastal flooding. We find that mangroves reduce AAL to properties behind them by over 25%, and that these benefits are distributed very heterogeneously along the coastline. Mangrove presence can also act to enhance the storm surge risk in areas where development has occurred seaward of mangroves.&lt;/p&gt;&lt;p&gt;In addition to looking at annual losses, we also focus on the storm surge caused by a specific severe event in Florida, based on Hurricane Irma (2017), and we estimate that existing mangroves reduced economic property damage by hundreds of millions of USD, and reduced coastal flooding for hundreds of thousands of people.&lt;/p&gt;&lt;p&gt;Together these studies aim to financially quantify some of the risk reduction services provided by natural defences in terms of reducing the cost of coastal flooding, and show that these services can be included in a catastrophe modelling framework commonly used in the insurance industry.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document