Characterisation of Effector Genes of Pseudomonads Causing Disease on Hazelnut

Author(s):  
S. Loreti ◽  
A. Gallelli ◽  
R. Jackson ◽  
D. Butcher ◽  
D. Arnold ◽  
...  
Keyword(s):  
2010 ◽  
Vol 48 (01) ◽  
Author(s):  
IA Malik ◽  
N Naz ◽  
F Moriconi ◽  
F Moriconi ◽  
B Baumgartner ◽  
...  

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elise J. Gay ◽  
Jessica L. Soyer ◽  
Nicolas Lapalu ◽  
Juliette Linglin ◽  
Isabelle Fudal ◽  
...  

Abstract Background The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of “two-speed” genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. Results We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. Conclusion This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 568
Author(s):  
Laura Vilanova ◽  
Claudio A. Valero-Jiménez ◽  
Jan A.L. van Kan

Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although M. fructicola is considered to cause the most severe yield losses in stone fruit. This study aimed to generate a high-quality genome of M. fructicola and to exploit it to identify genes that may contribute to pathogen virulence. PacBio sequencing technology was used to assemble the genome of M. fructicola. Manual structural curation of gene models, supported by RNA-Seq, and functional annotation of the proteome yielded 10,086 trustworthy gene models. The genome was examined for the presence of genes that encode secreted proteins and more specifically effector proteins. A set of 134 putative effectors was defined. Several effector genes were cloned into Agrobacterium tumefaciens for transient expression in Nicotiana benthamiana plants, and some of them triggered necrotic lesions. Studying effectors and their biological properties will help to better understand the interaction between M. fructicola and its stone fruit host plants.


2016 ◽  
Vol 215 (5) ◽  
pp. 735-747 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Vivien Xie ◽  
Lisa A. Taneyhill

During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase generates intracellular C-terminal fragments (CTF2s) that could acquire additional functions. Here we report that Cad6B CTF2 possesses a novel pro-EMT role by up-regulating EMT effector genes in vivo. After proteolysis, CTF2 remains associated with β-catenin, which stabilizes and redistributes both proteins to the cytosol and nucleus, leading to up-regulation of β-catenin, CyclinD1, Snail2, and Snail2 promoter-based GFP expression in vivo. A CTF2 β-catenin–binding mutant, however, fails to alter gene expression, indicating that CTF2 modulates β-catenin–responsive EMT effector genes. Notably, CTF2 association with the endogenous Snail2 promoter in the neural crest is β-catenin dependent. Collectively, our data reveal how Cad6B proteolysis orchestrates multiple pro-EMT regulatory inputs, including CTF2-mediated up-regulation of the Cad6B repressor Snail2, to ensure proper cranial neural crest EMT.


2015 ◽  
Vol 210 (4) ◽  
pp. 541-551 ◽  
Author(s):  
W. Mike Henne ◽  
Lu Zhu ◽  
Zsolt Balogi ◽  
Christopher Stefan ◽  
Jeffrey A. Pleiss ◽  
...  

Although endolysosomal trafficking is well defined, how it is regulated and coordinates with cellular metabolism is unclear. To identify genes governing endolysosomal dynamics, we conducted a global fluorescence-based screen to reveal endomembrane effector genes. Screening implicated Phox (PX) domain–containing protein Mdm1 in endomembrane dynamics. Surprisingly, we demonstrate that Mdm1 is a novel interorganelle tethering protein that localizes to endoplasmic reticulum (ER)–vacuole/lysosome membrane contact sites (MCSs). We show that Mdm1 is ER anchored and contacts the vacuole surface in trans via its lipid-binding PX domain. Strikingly, overexpression of Mdm1 induced ER–vacuole hypertethering, underscoring its role as an interorganelle tether. We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER–vacuole MCSs independently of established tether Nvj1. Finally, we find that Mdm1 truncations analogous to neurological disease–associated SNX14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Our work suggests that human Mdm1 homologues may play previously unappreciated roles in interorganelle communication and lipid metabolism.


2010 ◽  
Vol 23 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Christopher R. Clarke ◽  
Rongman Cai ◽  
David J. Studholme ◽  
David S. Guttman ◽  
Boris A. Vinatzer

Pseudomonas syringae is best known as a plant pathogen that causes disease by translocating immune-suppressing effector proteins into plant cells through a type III secretion system (T3SS). However, P. syringae strains belonging to a newly described phylogenetic subgroup (group 2c) are missing the canonical P. syringae hrp/hrc cluster coding for a T3SS, flanking effector loci, and any close orthologue of known P. syringae effectors. Nonetheless, P. syringae group 2c strains are common leaf colonizers and grow on some tested plant species to population densities higher than those obtained by other P. syringae strains on nonhost species. Moreover, group 2c strains have genes necessary for the production of phytotoxins, have an ice nucleation gene, and, most interestingly, contain a novel hrp/hrc cluster, which is only distantly related to the canonical P. syringae hrp/hrc cluster. This hrp/hrc cluster appears to encode a functional T3SS although the genes hrpK and hrpS, present in the classical P. syringae hrp/hrc cluster, are missing. The genome sequence of a representative group 2c strain also revealed distant orthologues of the P. syringae effector genes avrE1 and hopM1 and the P. aeruginosa effector genes exoU and exoY. A putative life cycle for group 2c P. syringae is discussed.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Sergio M. Latorre ◽  
C. Sarai Reyes-Avila ◽  
Angus Malmgren ◽  
Joe Win ◽  
Sophien Kamoun ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A406-A406
Author(s):  
Maria Costanzo ◽  
Kenneth Bruskiewicz ◽  
Lizz Caulkins ◽  
Marc Duby ◽  
Clint Gilbert ◽  
...  

Abstract Most associations from genome-wide association studies (GWAS) result from as-yet-unknown alterations of molecular or cellular function; the causal variants and effector genes responsible for them, and the tissues and pathways through which they act, remain largely unknown. Thousands of associated loci have now been identified for each common disease and its related traits. In order to translate GWAS data into biological knowledge, they must be integrated with functional genomic annotations reflecting tissue-specific regulation and with the results of bioinformatic methods that predict the functional effects of associations. However, these data types are typically spread across disparate resources, and working with them requires bioinformatic expertise. To make these results accessible and understandable to the broader diabetes and cardiometabolic disease research communities, we have developed the open-access Common Metabolic Diseases Knowledge Portal (CMDKP; cmdkp.org), which brings together a robust software and data storage platform with a streamlined and intuitive user interface for four disease areas: diabetes (both types 1 and 2); cardiovascular disease; cerebrovascular disease; and sleep and circadian disorders. The CMDKP enables researchers to access and explore a comprehensive matrix of genetic, genomic, and computational results. It includes 3 classes of genomic data: 1) GWAS summary statistics from the most current and authoritative datasets available, as identified by disease-area experts; 2) functional genomic annotations, such as chromatin accessibility, that reflect the tissue-specific regulatory potential of genomic regions; and 3) the results of bioinformatic methods applied to these aggregated data (for example, overlap-aware meta-analysis to determine “bottom-line” p-values, the GREGOR method for determining tissue-specific enrichment of genetic associations, the MAGMA method for generating gene-level association scores, and more). All of these data types are integrated and accessible via interactive tools that allow researchers to explore and evaluate the data in order to identify candidate disease effector genes for further research. The CMDKP provides researchers with the data and tools necessary to translate genetic associations and functional annotations into knowledge about disease mechanisms and potential therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria E. Constantin ◽  
Like Fokkens ◽  
Mara de Sain ◽  
Frank L. W. Takken ◽  
Martijn Rep

The fungus Fusarium oxysporum (Fo) is widely known for causing wilt disease in over 100 different plant species. Endophytic interactions of Fo with plants are much more common, and strains pathogenic on one plant species can even be beneficial endophytes on another species. However, endophytic and beneficial interactions have been much less investigated at the molecular level, and the genetic basis that underlies endophytic versus pathogenic behavior is unknown. To investigate this, 44 Fo strains from non-cultivated Australian soils, grass roots from Spain, and tomato stems from United States were characterized genotypically by whole genome sequencing, and phenotypically by examining their ability to symptomlessly colonize tomato plants and to confer resistance against Fusarium Wilt. Comparison of the genomes of the validated endophytic Fo strains with those of 102 pathogenic strains revealed that both groups have similar genomes sizes, with similar amount of accessory DNA. However, although endophytic strains can harbor homologs of known effector genes, they have typically fewer effector gene candidates and associated non-autonomous transposons (mimps) than pathogenic strains. A pathogenic ‘lifestyle’ is associated with extended effector gene catalogs and a set of “host specific” effectors. No candidate effector genes unique to endophytic strains isolated from the same plant species were found, implying little or no host-specific adaptation. As plant-beneficial interactions were observed to be common for the tested Fo isolates, the propensity for endophytism and the ability to confer biocontrol appears to be a predominant feature of this organism. These findings allow prediction of the lifestyle of a Fo strain based on its genome sequence as a potential pathogen or as a harmless or even beneficial endophyte by determining its effectorome and mimp number.


Sign in / Sign up

Export Citation Format

Share Document