Multianalytes Gas Sensors by Soft Lithography Induced Gratings with Sol-Gel and Copolymers Nanocomposites

Author(s):  
A. El Sachat ◽  
N. Aspiotis ◽  
M. Vasileiadis ◽  
G. Mousdis ◽  
S. Pispas ◽  
...  
Keyword(s):  
2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2103 ◽  
Author(s):  
Tae-Hee Han ◽  
So-Young Bak ◽  
Sangwoo Kim ◽  
Se Hyeong Lee ◽  
Ye-Ji Han ◽  
...  

This paper introduces a method for improving the sensitivity to NO2 gas of a p-type metal oxide semiconductor gas sensor. The gas sensor was fabricated using CuO nanowires (NWs) grown through thermal oxidation and decorated with ZnO nanoparticles (NPs) using a sol-gel method. The CuO gas sensor with a ZnO heterojunction exhibited better sensitivity to NO2 gas than the pristine CuO gas sensor. The heterojunction in CuO/ZnO gas sensors caused a decrease in the width of the hole accumulation layer (HAL) and an increase in the initial resistance. The possibility to influence the width of the HAL helped improve the NO2 sensing characteristics of the gas sensor. The growth morphology, atomic composition, and crystal structure of the gas sensors were analyzed using field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction, respectively.


2014 ◽  
Vol 152 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Ying Zhang ◽  
Qian-Qian Jia ◽  
Hui-Ming Ji ◽  
Jian-Jun Yu

2013 ◽  
Vol 481 ◽  
pp. 133-136 ◽  
Author(s):  
T.N. Myasoedova ◽  
G.E. Yalovega ◽  
N.K. Plugotarenko ◽  
M. Brzhezinskaya ◽  
V.V. Petrov ◽  
...  

Copper oxides films as promising materials for gas sensors applications were studied. Copper oxide films were deposited onto Si/SiO2substrates using a citrate sol-gel method with the subsequent temperature treatment at 150-5000C. These films were characterized by means of secondary electron microscopy (SEM) and X-ray-absorption near-edge structure (XANES) spectroscopy. The prepared films were utilized in NO2sensors. The dependences of the NO2response on the operating temperature and NO2concentration (10-200 ppm) were investigated. The maximum NO2response was achieved for the film annealed at 2500C.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
A. Z. Sadek ◽  
D. Buso ◽  
A. Martucci ◽  
P. Mulvaney ◽  
W. Wlodarski ◽  
...  

Amorphous titanium dioxide (TiO2) and gold (Au) dopedTiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-dopedTiO2films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto64∘YXLiNbO3SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and310∘C. It was found that gold doping onTiO2increased the device sensitivity and reduced the optimum operating temperature.


Author(s):  
Vladimiras Bondarenka ◽  
R. Sereika ◽  
A. Mironas ◽  
S. Grebinskij

The various gas sensors were designed for detection of different gases in the air using different oxides and impurities [1-3]. For example the manufacturing of ammonia sensors on the basis of CuxS-micro-porous-Si structure includes manufacture of micro-porous silicon, drawing on it of SiO2 isolating layer, and then the CuxS layer [4, 5]. The special equipment for all these processes is needed. More usable method for sensor production is so-called soft chemistry or sol–gel synthesis [6, 7].


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2600 ◽  
Author(s):  
Alexey Vasiliev ◽  
Andrey Varfolomeev ◽  
Ivan Volkov ◽  
Nikolay Simonenko ◽  
Pavel Arsenov ◽  
...  

The application of gas sensors in breath analysis is an important trend in the early diagnostics of different diseases including lung cancer, ulcers, and enteric infection. However, traditional methods of synthesis of metal oxide gas-sensing materials for semiconductor sensors based on wet sol-gel processes give relatively high sensitivity of the gas sensor to changing humidity. The sol-gel process leading to the formation of superficial hydroxyl groups on oxide particles is responsible for the strong response of the sensing material to this factor. In our work, we investigated the possibility to synthesize metal oxide materials with reduced sensitivity to water vapors. Dry synthesis of SnO2 nanoparticles was implemented in gas phase by spark discharge, enabling the reduction of the hydroxyl concentration on the surface and allowing the production of tin dioxide powder with specific surface area of about 40 m2/g after annealing at 610 °C. The drop in sensor resistance does not exceed 20% when air humidity increases from 40 to 100%, whereas the response to 100 ppm of hydrogen is a factor of 8 with very short response time of about 1 s. The sensor response was tested in mixtures of air with hydrogen, which is the marker of enteric infections and the marker of early stage fire, and in a mixture of air with lactate (marker of stomach cancer) and ammonia gas (marker of Helicobacter pylori, responsible for stomach ulcers).


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 785 ◽  
Author(s):  
Wen-Dong Zhou ◽  
Davoud Dastan ◽  
Jing Li ◽  
Xi-Tao Yin ◽  
Qi Wang

Metal oxide semiconductor (MOS) gas sensors have the advantages of high sensitivity, short response-recovery time and long-term stability. However, the shortcoming of poor discriminability of homogeneous gases limits their applications in gas sensors. It is well-known that the MOS materials have similar gas sensing responses to homogeneous gases such as CO and H2, so it is difficult for these gas sensors to distinguish the two gases. In this paper, simple sol–gel method was employed to obtain the ZnO–xNiO composites. Gas sensing performance results illustrated that the gas sensing properties of composites with x > 0.425 showed a p-type response to both CO and H2, while the gas sensing properties of composites with x < 0.425 showed an n-type response to both CO and H2. However, it was interesting that ZnO–0.425NiO showed a p-type response to CO but an discriminable response (n-type) to H2, which indicated that modulating the p-type or n-type semiconductor concentration in p-n composites could be an effective method with which to improve the discriminability of this type of gas sensor regarding CO and H2. The phenomenon of the special gas sensing behavior of ZnO–0.425NiO was explained based on the experimental observations and a range of characterization techniques, including XRD, HRTEM and XPS, in detail.


Sign in / Sign up

Export Citation Format

Share Document