2017 ◽  
Vol 28 (18) ◽  
pp. 2603-2616 ◽  
Author(s):  
Asif Khan ◽  
Hyun Sung Lee ◽  
Heung Soo Kim

In this article, the effect of a sensor-debonding failure on the active vibration control of a smart composite plate is investigated numerically. A mathematical model of the smart structure with a partially debonded piezoelectric sensor is developed using an improved layerwise theory, a higher-order electric-potential field that serves as the displacement field, and the potential variation through the piezoelectric patches. A state-space form that is based on the reduced-order model is employed for the controller design. A control strategy with a constant gain and velocity feedback is used to assess the vibration-control characteristics of the controller in the presence of the sensor-debonding failure. The obtained results show that sensor-debonding failure reduces the sensor-output, control-input signal, and active damping in magnitude that successively degrades the vibration attenuation capability of the active vibration controller. The settling time and relative tip displacement of the controlled structure increase with the increasing length of partial debonding between the piezoelectric sensor and host structure. Furthermore, a damage-sensitive feature along with multidimensional scaling showed excellent results for the detection and quantification of sensor-debonding failure in the active vibration control of smart structures.


2017 ◽  
Vol 61 (2) ◽  
pp. 115
Author(s):  
Mohamed Latrache ◽  
Mohamed Nadir Amrane

This paper presents a numerical study pertaining to on the active vibration control (AVC) of the 3-D rectangle simply supported plate bonded of the piezoelectric sensor/ actuator pairs. AVC is a large area of interest either in all sections of industry or in research. One way to control the vibration of dynamic systems is by using piezoelectric materials. A finite element method (FEM) analysis is used to model the dynamic behavior of the system. The frequencies of the isotropic pate and a smart structure are verified by the comparison between the analytical calculations and simulation. A LQR controller is designed based on the independent mode space control techniques to stifle the vibration of the system. The change in the sizes of the patches was a clear impact on the control results, and also in the values of the voltage in actuator. The results were established by simulating in ANSYS and MATLAB.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
G. J. Sheu ◽  
S. M. Yang ◽  
W. L. Huang

Intelligent structures with built-in piezoelectric sensor and actuator that can actively change their physical geometry and/or properties have been known preferable in vibration control. However, it is often arguable to determine if measurement of piezoelectric sensor is strain rate, displacement, or velocity signal. This paper presents a neural sensor design to simulate the sensor dynamics. An artificial neural network with error backpropagation algorithm is developed such that the embedded and attached piezoelectric sensor can faithfully measure the displacement and velocity without any signal conditioning circuitry. Experimental verification shows that the neural sensor is effective to vibration suppression of a smart structure by embedded sensor/actuator and a building structure by surface-attached piezoelectric sensor and active mass damper.


1997 ◽  
Vol 119 (1) ◽  
pp. 34-39 ◽  
Author(s):  
S. M. Yang ◽  
G. S. Lee

Smart structure with build-in sensor(s) and actuator(s) that can actively and adoptively change its physical geometry and properties has been considered one of the best candidates in vibration control applications. Implementation of neural networks to system identification and vibration suppression of a smart structure is conducted in this paper. Three neural networks are developed, one for system identification, the second for on-line state estimation, and the third for vibration suppression. It is shown both in analysis and in experiment that these neural networks can identify, estimate, and suppress the vibration of a composite structure by the embedded piezoelectric sensor and actuator. The controller is also shown to be robust to system parameter variations.


Author(s):  
Anshul Sharma

The active control of vibration of piezoelectric flexible smart structure is an important issue in engineering. Reducing vibration may improve the user's comfort and safety. This chapter presents a fuzzy logic approach for active control of vibration of a smart composite laminated spherical shell. The spherical shell is in the form of a layered composite shell having collocated piezoelectric sensor/actuator pair. The vibratory response of the shell is modeled using finite element method. There are five mechanical degrees of freedom per node and the potential difference across the piezoelectric layer is introduced as an additional electrical degree of freedom on an element level. The mode superposition method has been used to transform the coupled finite element equations of motion in the physical coordinates into a set of reduced uncoupled equations in the modal coordinates. The simulation results illustrate that the superiority of designed nonconventional fuzzy logic controller over conventional controllers.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 378-383 ◽  
Author(s):  
A. Benjeddou ◽  
M. A. Trindade ◽  
R. Ohayon

Author(s):  
Nik Ahmad Zainal Abidin ◽  
◽  
Norkharziana Mohd Nayan ◽  
Azuwa Ali ◽  
N. A. Azli ◽  
...  

This research presents a simulation analysis for the AC-DC converter circuit with a different configurations of the array connection of the piezoelectric sensor. The selection of AC-DC converter circuits is full wave bridge rectifier (FWBR), parallel SSHI (P-SSHI) and parallel voltage multiplier (PVM) with array configuration variation in series (S), parallel (P), series-parallel (SP) and parallel-series (PS). The system optimizes with different load configurations ranging from 10 kΩ to 1 MΩ. The best configuration of AC-DC converter with an appropriate array piezoelectric connection producing the optimum output of harvested power is presented. According to the simulation results, the harvested power produced by using P-SSHI converter connected with 3 parallel piezoelectric transducer array was 85.9% higher than for PVM and 15.88% higher than FWBR.


Author(s):  
Qibo Mao ◽  
Yuande Wang ◽  
Shizuo Huang

In this study, a new methodology is presented to detect the sensor fault for piezoelectric array based on the filtered frequency response function (FRF) shapes. The proposed method does not require prior knowledge about healthy piezoelectric array. First, the imaginary parts of FRFs from the piezoelectric array during vibration are measured and normalized to obtain the FRF shapes in different frequencies. Then the irregularities in these FRF shapes are extracted by using high-pass filter with properly chosen cut-off frequency. These abnormal irregularities on the filtered FRF shape curves indicate the location of the faulty sensor, due to the irregularity of FRF shapes introduced by the faulty piezoelectric element. The proposed sensor fault method is experimentally demonstrated on a clamped-clamped steel beam mounted with piezoelectric buzzer array. Two common piezoelectric sensor fault types including sensor breakage and debonding are evaluated. The experimental results indicate that the proposed method has great potential in the detection of the sensor fault for piezoelectric array as it is simple and does not require the FRF data of the healthy sensor array as a baseline.


Sign in / Sign up

Export Citation Format

Share Document