Effect of Process Parameters on Mechanical Properties of Solidified PLA Parts Fabricated by 3D Printing Process

Author(s):  
Jagdish Khatwani ◽  
Vineet Srivastava
Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4371
Author(s):  
Dorin-Ioan Catana ◽  
Mihai-Alin Pop ◽  
Denisa-Iulia Brus

Additive manufacturing is one of the technologies that is beginning to be used in new fields of parts production, but it is also a technology that is constantly evolving, due to the advances made by researchers and printing equipment. The paper presents how, by using the simulation process, the geometry of the 3D printed structures from PLA and PLA-Glass was optimized at the bending stress. The optimization aimed to reduce the consumption of filament (material) simultaneously with an increase in the bending resistance. In addition, this paper demonstrates that the simulation process can only be applied with good results to 3D printed structures when their mechanical properties are known. The inconsistency of printing process parameters makes the 3D printed structures not homogeneous and, consequently, the occurrence of errors between the test results and those of simulations become natural and acceptable. The mechanical properties depend on the values of the printing process parameters and the printing equipment because, in the case of 3D printing, it is necessary for each combination of parameters to determine their mechanical properties through specific tests.


2021 ◽  
Author(s):  
Zahoor Ahmed Shariff ◽  
Lokesh M. ◽  
K. Mayandi ◽  
A. K. Saravanan ◽  
P. Sethu Ramalingam ◽  
...  

2020 ◽  
pp. 089270572094537
Author(s):  
Ravinder Sharma ◽  
Rupinder Singh ◽  
Ajay Batish

The polyvinylidene difluoride + barium titanate (BaTiO3) +graphene composite (PBGC) is one of the widely explored thermoplastic matrix due to its 4D capabilities. The number of studies has been reported on the process parameters of twin-screw extruder (TSE) setup (as mechanical blending technique) for the development of PBGC in 3D printing applications. But, hitherto, little has been reported on chemical-assisted mechanical blending (CAMB) as solution mixing and melt mixing technique combination for preparation of PBGC. In this work, for preparation of PBGC feedstock filaments, CAMB has been used. Also, the effect of process parameters of TSE on the mechanical, dimensional, morphological, and thermal properties of prepared filament of PBGC have been explored followed by 3D printing. Further, a comparative study has been reported for the properties of prepared filaments with mechanically blended composites. Similarly, the mechanical properties of 3D printed parts of chemically and mechanically blended composites have been compared. The results of tensile testing for CAMB of PBGC show that the filament prepared with 15% BaTiO3 is having maximum peak strength 43.00 MPa and break strength 38.73 MPa. The optical microphotographs of the extruded filaments revealed that the samples prepared at 180°C extruder temperature and 60 r/min screw speed have minimum porosity, as compared to filaments prepared at high extruder temperature. Further, the results of the comparative study revealed that the filaments of CAMB composites show better mechanical properties as compared to the filaments of mechanically mixed composites. However, the dimensional properties were almost similar in both cases. It was also found that the CAMB composites have better properties at low processing temperature, whereas mechanically blended composites show better results at a higher temperature. While comparing 3D printed parts, tensile strength of specimens fabricated from CAMB was more than the mechanically blended PBGC.


2019 ◽  
Vol 25 (6) ◽  
pp. 1017-1029
Author(s):  
Javier Navarro ◽  
Matthew Din ◽  
Morgan Elizabeth Janes ◽  
Jay Swayambunathan ◽  
John P. Fisher ◽  
...  

Purpose This paper aims to study the effects of part orientation during the 3D printing process, particularly to the case of using continuous digital light processing (cDLP) technology. Design/methodology/approach The effects of print orientation on the print accuracy of microstructural features were assessed using microCT imaging and mechanical properties of cDLP microporous scaffolds were characterized under simple compression and complex biaxial loading. Resin viscosity was also quantified to incorporate this factor in the printing discussion. Findings The combined effect of print resin viscosity and the orientation and spacing of pores within the structure alters how uncrosslinked resin flows within the construct during cDLP printing. Microstructural features in horizontally printed structures exhibited greater agreement to the design dimensions than vertically printed constructs. While cDLP technologies have the potential to produce mechanically isotropic solid constructs because of bond homogeneity, the effect of print orientation on microstructural feature sizes can result in structurally anisotropic porous constructs. Originality/value This work is useful to elucidate on the specific capabilities of 3D printing cDLP technology. The orientation of the part can be used to optimize the printing process, directly altering parameters such as the supporting structures required, print time, layering, shrinkage or surface roughness. This study further detailed the effects on the mechanical properties and the print accuracy of the printed scaffolds.


2019 ◽  
Vol 97 ◽  
pp. 154-161 ◽  
Author(s):  
Antonio J. Guerra ◽  
Jan Lammel-Lindemann ◽  
Alex Katko ◽  
Alex Kleinfehn ◽  
Ciro A. Rodriguez ◽  
...  

2018 ◽  
Vol 237 ◽  
pp. 02014 ◽  
Author(s):  
Petr Vosynek ◽  
Tomas Navrat ◽  
Adela Krejbychova ◽  
David Palousek

Fused Deposition Modelling (FDM) is a fast-growing 3D printing technology. This technology expands rapidly even in households. Most users set print parameters only according to their own experience, regardless of the final mechanical properties. In order to predict the mechanical behaviour of the FDM-printed components, it is important to understand not only the properties of the printing material but also the effect of the printing process parameters on the mechanical properties. Components manufactured by FDM technology have an anisotropic structure, therefore the filling angle, fill shape, air gap, print orientation, and print temperature affect the resulting mechanical properties. This work deals with the change of mechanical properties depending on the setting of the filling angle, the shape of the filling, the orientation of the parts during printing, the influence of the material and pigment manufacturer.


Sign in / Sign up

Export Citation Format

Share Document