Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges

Author(s):  
Jifu Mao ◽  
Ze Zhang
mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
David J. F. Walker ◽  
Eric Martz ◽  
Dawn E. Holmes ◽  
Zimu Zhou ◽  
Stephen S. Nonnenmann ◽  
...  

ABSTRACTMicrobially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum ofMethanospirillum hungateiis electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved inArchaea. Furthermore, the structure of theM. hungateiarchaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016,https://doi.org/10.1038/nmicrobiol.2016.222). Thus, the archaellum ofM. hungateiis the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of theM. hungateiarchaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of “green” electronic materials that can be microbially produced with renewable feedstocks.IMPORTANCEMicrobially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the knownM. hungateiarchaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum ofM. hungateiis electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.


2019 ◽  
Author(s):  
Toshiyuki Ueki ◽  
David J.F. Walker ◽  
Pier-Luc Tremblay ◽  
Kelly P. Nevin ◽  
Joy E. Ward ◽  
...  

AbstractThe potential applications of electrically conductive protein nanowires (e-PNs) harvested fromGeobacter sulfurreducensmight be greatly expanded if the outer surface of the wires could be modified to confer novel sensing capabilities or to enhance binding to other materials. We developed a simple strategy for functionalizing e-PNs with surface-exposed peptide ligands. TheG. sulfurreducensgene for the monomer that assembles into e-PNs was modified to add known peptide ligands at the carboxyl terminus of the monomer. Strains ofG. sulfurreducenswere constructed that fabricated synthetic e-PNs with a six-histidine ‘His-tag’ or both the His-tag and a nine-peptide ‘HA-tag’ exposed on the outer surface. Addition of the peptide ligands did not diminish e-PN conductivity. The abundance of HA-tag in e-PNs was controlled by placing expression of the gene for the synthetic monomer with the HA-tag under transcriptional regulation. These studies suggest broad possibilities for tailoring e-PN properties for diverse applications.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yang Tan ◽  
Ramesh Y. Adhikari ◽  
Nikhil S. Malvankar ◽  
Joy E. Ward ◽  
Trevor L. Woodard ◽  
...  

ABSTRACT The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens , were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. IMPORTANCE e-pili are a remarkable electrically conductive material that can be sustainably produced without harsh chemical processes from renewable feedstocks and that contain no toxic components in the final product. Thus, e-pili offer an unprecedented potential for developing novel materials, electronic devices, and sensors for diverse applications with a new “green” technology. Increasing e-pili conductivity will even further expand their potential applications. A proven strategy is to design synthetic e-pili that contain tryptophan, an aromatic amino acid not found in previously studied e-pili. The studies reported here demonstrate that a productive alternative approach is to search more broadly in the microbial world. Surprisingly, even though G. metallireducens and G. sulfurreducens are closely related, the conductivities of their e-pili differ by more than 3 orders of magnitude. The ability to produce e-pili with high conductivity without generating a genetically modified product enhances the attractiveness of this novel electronic material.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 960 ◽  
Author(s):  
Jiayue Wen ◽  
Yanhong Tian ◽  
Chunjin Hang ◽  
Zhen Zheng ◽  
He Zhang ◽  
...  

Electrically conductive adhesives (ECAs) are one of the low temperature bonding materials. It can be used to replace toxic Sn-Pb solder. The key issue for the application of ECAs is how to improve their electrical properties. In the present study, we develop an effective method to promote the electrical properties of ECAs by addition of polyaniline (PANI) nanoparticles. PANIs were synthesized via a facile one-step chemical oxidative polymerization method. After adding 0.5 wt% PANI nanoparticles, the conductivity of ECAs increased dramatically by an order of magnitude. The bulk resistivity of 8.8 × 10−5 Ω·cm is achieved for 65 wt% silver fillers with 0.5 wt% PANIs loaded ECAs. Besides, this improvement has no negative effect on the shear strength and the aging life of ECAs. Moreover, the use of PANIs not only lowers the percolation threshold of ECAs, but also reduces the cost and improves the bonding reliability. Finally, PANIs enhanced ECAs patterns were successfully printed by a stencil printing method, which proved their potential applications in replacing conventional solder pastes and printing functional circuits.


2012 ◽  
Vol 83 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Jihyun Bae ◽  
Kyung Hwa Hong

Electrically conductive textiles have many potential applications, such as sensors, static charge dissipation, and electro-magnetic interference shields. In this study, two different types of core spun yarns were produced with silver-plated nylon filaments as the conductive material. The electrical characteristics of the core spun yarns and the fabric samples knitted with these yarns were investigated. It was clear that the surface resistance of each type of knitted fabric depends on the surface exposure of the conductive materials. However, both knit types exhibited reasonable features for application as a touching operator for capacitive touch screen panels.


Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Sign in / Sign up

Export Citation Format

Share Document