Rain Gardens as Stormwater Management Tool

Author(s):  
Piyush Malaviya ◽  
Rozi Sharma ◽  
Pradeep Kumar Sharma
2021 ◽  
Vol 13 (4) ◽  
pp. 1972
Author(s):  
Jeremy Wright ◽  
Jeremy Lytle ◽  
Devon Santillo ◽  
Luzalen Marcos ◽  
Kristiina Valter Mai

Urban densification and climate change are creating a multitude of issues for cities around the globe. Contributing factors include increased impervious surfaces that result in poor stormwater management, rising urban temperatures, poor air quality, and a lack of available green space. In the context of volatile weather, there are growing concerns regarding the effects of increased intense rainfalls and how they affect highly populated areas. Green roofs are becoming a stormwater management tool, occupying a growing area of urban roof space in many developed cities. In addition to the water-centric approach to the implementation of green roofs, these systems offer a multitude of benefits across the urban water–energy–food nexus. This paper provides insight to green roof systems available that can be utilized as tools to mitigate the effects of climate change in urbanized areas. A new array of green roof testing modules is presented along with research methods employed to address current issues related to food, energy and water performance optimization. Rainwater runoff after three rain events was observed to be reduced commensurate with the presence of a blue roof retention membrane in the testbed, the growing media depth and type, as well as the productive nature of the plants in the testbed. Preliminary observations indicate that more productive green roof systems may have increasingly positive benefits across the water–energy–food nexus in dense urban areas that are vulnerable to climate disruption.


2017 ◽  
Vol 47 (1) ◽  
pp. 32-65 ◽  
Author(s):  
Dong Won Shin ◽  
Laura McCann

This study explores factors affecting adoption of two stormwater management practices, rain gardens and rain barrels. Mail survey data from Columbia, Missouri indicate adoption rates of 3.12 percent (rain gardens) and 7.47 percent (rain barrels). This unique dataset enables us to distinguish among nonadopters using knowledge levels, and to investigate the effect of practice-specific barriers. Clustered multinomial logistic regressions reveal serious gardeners are more likely to adopt both practices. Specific barriers differ by practice and type of nonadopter. Adding practice-specific barriers increased pseudo R2 values from 0.12 to 0.22 for rain gardens and from 0.13 to 0.26 for rain barrels.


2018 ◽  
Vol 10 (10) ◽  
pp. 3665 ◽  
Author(s):  
Manasvini Thiagarajan ◽  
Galen Newman ◽  
Shannon Zandt

Climate change and its related factors are increasing the frequency of hurricanes, coastal storms, and urban flooding. Recovery from disasters can be slow, with jurisdictions failing to rebuild better, wasting time and money without improving resilience for the next disaster. To help attenuate floods and mitigate their impact, Low-Impact Development (LID) and the incorporation of green infrastructure (GI) is gaining in popularity. LID includes more natural methods of absorbing, redirecting, retaining, and filtering water through GI installations such as rain gardens, detention ponds, and the reduction of impervious surfaces. LID is, however, primarily implemented and evaluated only on a local scale; few studies have assessed the broader impact of GI on a larger scale. In fact, most performance calculators that evaluate the effects of GI are only useful at the site scale. Further, most GI advocates propose its use in new developments without much attention to retrofitting existing suburban development. This article seeks to determine what the potential effects of retrofitting an existing suburban neighborhood with GI for flood protection at a larger scale could be, using Sugar Land, Texas, United States as a case site. First, low-impact facilities are proposed and schematically designed at a site scale for a typical single-family lot. The volume of rainfall that can be retained on site, due to each incorporated feature, was then derived using the Green Values National Stormwater Management Calculator. Using these data, the total volume of rainfall that could be retained if all residential sites in Sugar Land incorporated similar facilities was then projected. The results show that Sugar Land has the capacity to annually capture 56 billion liters of stormwater if all residential properties use LID. Additional benefits of the use of GI include reduced heat (37%), improved aesthetics and property values (20%), increased recreational opportunities (18%), improved water quality (12%), improved air quality (5%), increased green collar jobs (4%), reduced damage from harmful gas emissions (3%), and increased energy savings (1%), thereby surpassing conventional stormwater management techniques.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3513
Author(s):  
Mari E. Danz ◽  
Nicolas H. Buer ◽  
William R. Selbig

Permeable pavement has been shown to be an effective urban stormwater management tool although much is still unknown about freeze-thaw responses and the implications for deicer reduction in cold weather climates. Temperature data from the subsurface of three permeable pavement types—interlocking concrete pavers (PICP), concrete (PC), and asphalt (PA)—were collected over a seven-year period and evaluated. Temperature profiles of all pavements indicate favorable conditions to allow infiltration during winter rain and melting events, with subsurface temperatures remaining above freezing even when air temperatures were below freezing. Data show that PICP surpassed PC and PA with fewer days below freezing, higher temperatures on melt days, slower freeze and faster thaw times, and less penetration of freezing temperatures at depth.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2694
Author(s):  
Chen Shen ◽  
Haishan Xia ◽  
Xin Fu ◽  
Xinhao Wang ◽  
Weiping Wang

Flooding has presented a significant risk for urban areas around the world. Road inundation is one of the severe consequences leading to traffic issues and congestion. Green infrastructure (GI) offers further potential for stormwater management as an environmentally friendly and sustainable solution. However, sewer system behaviour has been overlooked in GI implementation. This study investigates sewer performance by measuring topological connectivity and hydraulic characteristics, and critical components are identified under different design storms. Three retrofit scenarios, including enlarged pipes (grey infrastructure, Grey I), rain gardens (GI), and the combination of enlarged pipes and increased rain gardens (GI + Grey I), are proposed according to the distribution of critical components. The results show that it is feasible to locate the vulnerable parts of the sewer system and GI site allocations based on the critical components that significantly impact the performance of the entire system. While all three scenarios can mitigate inundation, GI and GI + Grey I perform better than pipe enlargement, especially for runoff reduction during long-duration rainfall. Furthermore, the sewer behaviour and retrofit effect are dynamic under different rainfall patterns, leading to diverse combined effects. The discoveries reveal that the adaptation measures should combine with sewer behaviour and local rainfall characteristics to enhance stormwater management.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1184 ◽  
Author(s):  
Ruth Quinn ◽  
Peter Melville-Shreeve ◽  
David Butler ◽  
Virginia Stovin

Rainwater harvesting systems are often used as both an alternative water source and a stormwater management tool. Many studies have focused on the water-saving potential of these systems, but research into aspects that impact stormwater retention—such as demand patterns and climate change—is lacking. This paper investigates the short-term impact of demand on both water supply and stormwater management and examines future and potential performance over a longer time scale using climate change projections. To achieve this, data was collected from domestic rainwater harvesting systems in Broadhempston, UK, and used to create a yield-after-spillage model. The validation process showed that using constant demand as opposed to monitored data had little impact on accuracy. With regards to stormwater management, it was found that monitored households did not use all the non-potable available water, and that increasing their demand for this was the most effective way of increasing retention capacity based on the modelling study completed. Installing passive or active runoff control did not markedly improve performance. Passive systems reduced the outflow to greenfield runoff for the longest time, whereas active systems increased the outflow to a level substantially above roof runoff in the 30 largest events.


Sign in / Sign up

Export Citation Format

Share Document