Machine Learning Based Electronic Triage for Emergency Department

Author(s):  
Diana Olivia ◽  
Ashalatha Nayak ◽  
Mamatha Balachandra
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eyal Klang ◽  
Benjamin R. Kummer ◽  
Neha S. Dangayach ◽  
Amy Zhong ◽  
M. Arash Kia ◽  
...  

AbstractEarly admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text data to identify patients requiring NSICU admission shortly after arrival to the emergency department (ED). We conducted a single-center, retrospective cohort study of adult patients at the Mount Sinai Hospital, an academic medical center in New York City. All patients presenting to our institutional ED between January 2014 and December 2018 were included. Structured (tabular) demographic, clinical, bed movement record data, and free text data from triage notes were extracted from our institutional data warehouse. A machine learning model was trained to predict likelihood of NSICU admission at 30 min from arrival to the ED. We identified 412,858 patients presenting to the ED over the study period, of whom 1900 (0.5%) were admitted to the NSICU. The daily median number of ED presentations was 231 (IQR 200–256) and the median time from ED presentation to the decision for NSICU admission was 169 min (IQR 80–324). A model trained only with text data had an area under the receiver-operating curve (AUC) of 0.90 (95% confidence interval (CI) 0.87–0.91). A structured data-only model had an AUC of 0.92 (95% CI 0.91–0.94). A combined model trained on structured and text data had an AUC of 0.93 (95% CI 0.92–0.95). At a false positive rate of 1:100 (99% specificity), the combined model was 58% sensitive for identifying NSICU admission. A machine learning model using structured and free text data can predict NSICU admission soon after ED arrival. This may potentially improve ED and NSICU resource allocation. Further studies should validate our findings.


Author(s):  
Gabriel Wardi ◽  
Morgan Carlile ◽  
Andre Holder ◽  
Supreeth Shashikumar ◽  
Stephen R. Hayden ◽  
...  

Author(s):  
Eun-Seok Choi ◽  
Jae Ang Sim ◽  
Young Gon Na ◽  
Jong- Keun Seon ◽  
Hyun Dae Shin

Abstract Purpose Prompt diagnosis and treatment of septic arthritis of the knee is crucial. Nevertheless, the quality of evidence for the diagnosis of septic arthritis is low. In this study, the authors developed a machine learning-based diagnostic algorithm for septic arthritis of the native knee using clinical data in an emergency department and validated its diagnostic accuracy. Methods Patients (n = 326) who underwent synovial fluid analysis at the emergency department for suspected septic arthritis of the knee were enrolled. Septic arthritis was diagnosed in 164 of the patients (50.3%) using modified Newman criteria. Clinical characteristics of septic and inflammatory arthritis were compared. Area under the receiver-operating characteristic (ROC) curve (AUC) statistics was applied to evaluate the efficacy of each variable for the diagnosis of septic arthritis. The dataset was divided into independent training and test sets (comprising 80% and 20%, respectively, of the data). Supervised machine-learning techniques (random forest and eXtreme Gradient Boosting: XGBoost) were applied to develop a diagnostic model using the training dataset. The test dataset was subsequently used to validate the developed model. The ROC curves of the machine-learning model and each variable were compared. Results Synovial white blood cell (WBC) count was significantly higher in septic arthritis than in inflammatory arthritis in the multivariate analysis (P = 0.001). In the ROC comparison analysis, synovial WBC count yielded a significantly higher AUC than all other single variables (P = 0.002). The diagnostic model using the XGBoost algorithm yielded a higher AUC (0.831, 95% confidence interval 0.751–0.923) than synovial WBC count (0.740, 95% confidence interval 0.684–0.791; P = 0.033). The developed algorithm was deployed as a free access web-based application (www.septicknee.com). Conclusion The diagnosis of septic arthritis of the knee might be improved using a machine learning-based prediction model. Level of evidence Diagnostic study Level III (Case–control study).


2014 ◽  
Vol 177 (3) ◽  
pp. 1095-1097 ◽  
Author(s):  
Nan Liu ◽  
Marcus Aik Beng Lee ◽  
Andrew Fu Wah Ho ◽  
Benjamin Haaland ◽  
Stephanie Fook-Chong ◽  
...  

2021 ◽  
Author(s):  
Peter Liptak ◽  
Peter Banovcin ◽  
Robert Rosolanka ◽  
Michal Prokopic ◽  
Ivan Kocan ◽  
...  

Background and aim: COVID-19 can be presented with various gastrointestinal symptoms. Shortly after the pandemic outbreak several machine learning algorithms have been implemented to assess new diagnostic and therapeutic methods for this disease. Aim of this study is to assess gas-trointestinal and liver related predictive factors for SARS-CoV-2 associated risk of hospitalization. Methods: Data collection was based on questionnaire from the COVID-19 outpatient test center and from the emergency department at the University hospital in combination with data from inter-nal hospital information system and from the mobile application used for telemedicine follow-up of patients. For statistical analysis SARS-CoV-2 negative patients were considered as controls to three different SARS-CoV-2 positive patient groups (divided based on severity of the disease). Results: Total of 710 patients were enrolled in the study. Presence of diarrhea and nausea was significantly higher in emergency department group than in the COVID-19 outpatient test center. Among liver enzymes only aspartate transaminase (AST) has been significantly elevated in the hospitalized group compared to patients discharged home. Based on random forest algorithm, AST has been identified as the most important predictor followed by age or diabetes mellitus. Diarrhea and bloating have also predictive importance although much lower than AST. Conclusion: SARS-CoV-2 positivity is connected with isolated AST elevation and the level is linked with the severity of the disease. Furthermore, using machine learning random forest algo-rithm, we have identified elevated AST as the most important predictor for COVID-19 related hos-pitalizations.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2102
Author(s):  
Eyal Klang ◽  
Robert Freeman ◽  
Matthew A. Levin ◽  
Shelly Soffer ◽  
Yiftach Barash ◽  
...  

Background & Aims: We aimed at identifying specific emergency department (ED) risk factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model (ML) for predicting complicated AD. Methods: We analyzed data retrieved from unselected consecutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The study time frame was from January 2011 through March 2021. Data were used to train and evaluate a gradient-boosting machine learning model to identify patients with complicated diverticulitis, defined as a need for invasive intervention or in-hospital mortality. The model was trained and evaluated on data from four hospitals and externally validated on held-out data from the fifth hospital. Results: The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68) and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium (AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78–0.91) for predicting complicated diverticulitis. For Youden’s index, the model showed a sensitivity of 88% with a false positive rate of 1:3.6. Conclusions: A ML model trained on clinical measures provides a proof of concept performance in predicting complications in patients presenting to the ED with AD. Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for further treatment under an ambulatory setting.


2020 ◽  
Vol 7 (3) ◽  
pp. 197-205
Author(s):  
Soo Yeon Kang ◽  
Won Chul Cha ◽  
Junsang Yoo ◽  
Taerim Kim ◽  
Joo Hyun Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document