Advance Biomedical Sensors and Transducers

Author(s):  
Harishchandra Digambar Jirimali
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Abdolali ◽  
Hooman Barati Sedeh ◽  
Mohammad Hosein Fakheri ◽  
Chen Shen ◽  
Fei Sun

AbstractBased on the transformation acoustics methodology, the design principle for achieving an arbitrary shape magnifying lens (ASML) is proposed. Contrary to the previous works, the presented ASML is competent of realizing far-field high resolution images and breaking the diffraction limit, regardless of the position of the utilized sources. Therefore, objects locating within the designed ASML can be properly resolved in the far-field region. It is shown that the obtained material through the theoretical investigations becomes an acoustic null medium (ANM), which has recently gained a significant attention. Besides the homogeneity of ANM, which makes it an implementable material, it is also independent of the perturbation in the geometry of the lens, in such a way that the same ANM can be used for different structural topologies. The obtained ANM has been implemented via acoustics unit cells formed by membranes and side branches with open ends and then was utilized to realize an ASML with the aid of effective medium theory. It is shown that the far-field results of an ideal ASML abide well with the results of the implemented sample, validating the proposed design principle. The presented acoustic magnifying lens has a wide spectrum of possible applications ranging from medical imaging, and biomedical sensors to focused ultrasound surgery.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Yiwei Han ◽  
Jingyan Dong

The paper provides an overview of high-resolution electrohydrodynamic (EHD) printing processes for general applications in high-precision micro/nanoscale fabrication and manufacturing. Compared with other printing approaches, EHD printing offers many unique advantages and opportunities in the printing resolution, tunable printing modes, and wide material applicability, which has been successfully applied in numerous applications that include additive manufacturing, printed electronics, biomedical sensors and devices, and optical and photonic devices. In this review, the EHDs-based printing mechanism and the resulting printing modes are described, from which various EHD printing processes were developed. The material applicability and ink printability are discussed to establish the critical factors of the printable inks in EHD printing. A number of EHD printing processes and printing systems that are suitable for micro/nanomanufacturing applications are described in this paper. The recent progresses, opportunities, and challenges of EHD printing are reviewed for a range of potential application areas.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3436 ◽  
Author(s):  
Juan Torres ◽  
Braulio García-Cámara ◽  
Isabel Pérez ◽  
Virginia Urruchi ◽  
José Sánchez-Pena

Wireless communication is growing quickly and now allows technologies like the Internet of Things (IoT). It is included in many smart sensors helping to reduce the installation and system costs. These sensors increase flexibility, simplify deployment and address a new set of applications that was previously impossible with a wired approach. In this work, a wireless temperature sensor based on a nematic liquid crystal as variable capacitance is proposed as a proof of concept for potential wearable applications. Performance analysis of the wireless temperature sensor has been carried out and a simple equivalent circuit has been proposed. Sensor prototype has been successfully fabricated and demonstrated as the beginning of new biomedical sensors.


Author(s):  
Ralf Lucklum ◽  
Mikhail Zubtsov ◽  
Simon Villa Arango

We report on first steps towards a phononic crystal sensor for biomedical applications. Phononic crystals and metamaterials allow for unprecedented control of sound propagation. The classical ultrasonic sensors, acoustic microsensors and MEMS resonator sensors face severe limitations when applying them to small volume liquid analytes. Phononic crystal sensors are a new concept following the route of photonic crystal sensors. Basically, the material of interest, here a liquid analyte confined in a cavity of a phononic crystal having a solid matrix constitutes one component of the phononic crystal. In an application as chemical sensor the value of interest, let’s say the concentration of a toxic compound in liquid, is related to acoustic properties of the liquid in the cavity. A change in the concentration causes measurable changes in the properties of the phononic crystal. Transmission or reflection coefficients are appropriate parameters for measurement. Specifically, a resonance induced well separated transmission peak within the band gap is the most favorable feature. The sensor scheme therefore relies on the determination of the frequency of maximum transmission as measure of concentration. Promising applications like biomedical sensors, point-of-care diagnostics or fast screening introduce further engineering challenges, specifically when considering a disposable element containing the analyte. The three key challenges are the strong restriction coming from limitations to approved materials for the analyte container, geometric dimensions in the mm-range common in hospital or point-of-care environment and acoustic coupling between sensor platform and analyte container.


Author(s):  
Marco Recenti ◽  
Carlo Ricciardi ◽  
Romain Aubonnet ◽  
Ilaria Picone ◽  
Deborah Jacob ◽  
...  

Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (IMS). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for IMS). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2931
Author(s):  
Waldemar Jendernalik ◽  
Jacek Jakusz ◽  
Grzegorz Blakiewicz

Buffer-based CMOS filters are maximally simplified circuits containing as few transistors as possible. Their applications, among others, include nano to micro watt biomedical sensors that process physiological signals of frequencies from 0.01 Hz to about 3 kHz. The order of a buffer-based filter is not greater than two. Hence, to obtain higher-order filters, a cascade of second-order filters is constructed. In this paper, a more general method for buffer-based filter synthesis is developed and presented. The method uses RLC ladder prototypes to obtain filters of arbitrary orders. In addition, a set of novel circuit solutions with ultra-low voltage and power are proposed. The introduced circuits were synthesized and simulated using 180-nm CMOS technology of X-FAB. One of the designed circuits is a fourth-order, low-pass filter that features: 100-Hz passband, 0.4-V supply voltage, power consumption of less than 5 nW, and dynamic range above 60 dB. Moreover, the total capacitance of the proposed filter (31 pF) is 25% lower compared to the structure synthesized using a conventional cascade method (40 pF).


Sign in / Sign up

Export Citation Format

Share Document