A Variable Viscosity Technique for the Analysis of Static and Dynamic Performance Parameters of Three-Lobe Fluid Film Bearing Operating with TiO2-Based Nanolubricant

Author(s):  
Ashutosh Kumar ◽  
Sashindra Kumar Kakoty
Author(s):  
Ashutosh Kumar ◽  
Sashindra Kumar Kakoty

Abstract Static and dynamic performance parameters of two-lobe journal bearing, working with non-Newtonian lubricant has been obtained. Krieger-Dougherty model is used to obtain the effective viscosity of nano-lubricant for a given concentration of solid-particle in base lubricant. Modified Reynolds equation is solved to obtain bearing performance parameters for couple stress model and variable viscosity model. Dynamic coefficients are also determined for various couple stress parameter. Results reveal a noticeable increase in flow co-efficient and load carrying capacity while there is a decrease in friction variable. It also reveals a significant betterment in dynamic co-efficient of bearing.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ashutosh Kumar ◽  
S. K. Kakoty

The present study analyzes the effect of pressure dam depth and relief track depth on the performance of three-lobe pressure dam bearing. Different values of dam depth and relief track depth are taken in nondimensional form in order to analyze their effect. Results are plotted for different parameters against eccentricity ratios and it is shown that the effect of pressure dam depth and relief track depth has great significance on stability and other performance parameters. Study of stability and performance characteristics is undertaken simultaneously.


2011 ◽  
Vol 90-93 ◽  
pp. 1100-1105
Author(s):  
Zhi Jie Sun ◽  
Jun Min Shen ◽  
Jian Bin Zhao ◽  
Zhong Ming Su

Through theoretical calculation, systemic analysis of dynamic performance of the 64m single and double line railway steel truss bridges on the expanding condition and conventional condition. Contrast and analysis the main dynamic performance parameters of bridges on the two kinds of operating condition. In 64m steel truss bridges of Shuozhou-Huanghuagang Railway application practice proves that on expanding heavy-load condition, the main dynamic performance parameters of bridges are slightly larger than conventional condition, but the variation law of vertical acceleration of mid-span is different.


1968 ◽  
Vol 10 (4) ◽  
pp. 363-366
Author(s):  
M. D. Wood

The note compares recently published versions of the governing gas film equations for slip-flow and turbulent flow with Reynolds equation for laminar flow. The comparison shows how approximate values of steady-state and dynamic performance parameters may be deduced for the new conditions from existing data.


2009 ◽  
Vol 16-19 ◽  
pp. 1179-1183
Author(s):  
Qiang Jiang ◽  
Hong Yi Liu ◽  
Nai Shi Cheng ◽  
Jian Jun Hao

Based on development project of electro-mechanical control type continuously variable transmission, this paper has done the following works: First of all, the structure and working principle of EM-CVT is studied; then, mathematical model was established; finally, via numerical simulation, Performance Parameters of transmission system, such as mechanical characteristics, dynamic performance of execution system are mastered in the transmission process of EM-CVT. Analysis of the study will contribute to the development of high-quality and highly efficient controller for EM-CVT.


Author(s):  
Ashutosh Kumar ◽  
SK Kakoty

Steady-state and dynamic performance parameters of three-lobe fluid film bearing, operating on TiO2 nanolubricant have been obtained. The effective viscosity for a given volume fraction of TiO2 nanoparticle in base fluid is obtained by using Krieger–Dougherty viscosity model. Various bearing performance parameters are obtained by solving remodeled Reynolds equation, which includes couple stress parameter. The stiffness and damping coefficients are also obtained for different values of the couple stress parameter. Results show a significant rise in the nondimensional load-carrying capacity and flow coefficient while there is a decrease in friction variable. It also reveals a significant improvement in the dynamic coefficient of bearing.


1995 ◽  
Vol 62 (3) ◽  
pp. 674-678 ◽  
Author(s):  
Zhou Yang ◽  
L. San Andres ◽  
D. W. Childs

A bulk-flow thermohydrodynamic (THD) analysis is developed for prediction of the static and dynamic performance characteristics of turbulent-flow, process-liquid, hydrostatic journal bearings (HJBs). Pointwise evaluation of temperature and hence liquid properties is achieved through the solution of the energy equation in the fluid film with insulated boundaries, and justified for fluid film bearings with external pressurization. Fluid inertia within the film lands and at recess edges is preserved in the analysis. Flow turbulence is accounted through turbulence shear parameters based on friction factors derived from Moody’s formulae. The effects of fluid compressibility and temperature variation in the bearing recesses are included. Numerical solution and results are presented in the second part of this work and compared with some limited experimental data for a liquid hydrogen (LH2) bearing.


1993 ◽  
Vol 115 (3) ◽  
pp. 538-543 ◽  
Author(s):  
D. Vijayaraghavan ◽  
D. E. Brewe ◽  
T. G. Keith

In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi elliptical and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing.


Sign in / Sign up

Export Citation Format

Share Document