Research on Dynamic Characteristics of Electro-Mechanical Control Type CVT

2009 ◽  
Vol 16-19 ◽  
pp. 1179-1183
Author(s):  
Qiang Jiang ◽  
Hong Yi Liu ◽  
Nai Shi Cheng ◽  
Jian Jun Hao

Based on development project of electro-mechanical control type continuously variable transmission, this paper has done the following works: First of all, the structure and working principle of EM-CVT is studied; then, mathematical model was established; finally, via numerical simulation, Performance Parameters of transmission system, such as mechanical characteristics, dynamic performance of execution system are mastered in the transmission process of EM-CVT. Analysis of the study will contribute to the development of high-quality and highly efficient controller for EM-CVT.

2020 ◽  
Vol 110 (11-12) ◽  
pp. 787-789
Author(s):  
Marcel Simons ◽  
Till Rusche ◽  
Tobias Valentino ◽  
Tim Radel ◽  
Frank Vollertsen

Die Ultrakurzpuls (UKP)-laserbasierte Bearbeitung erlaubt die Herstellung von Netzstrukturen mit verschiedenen Transmissionsgraden. Vorteile der UKP-laserbasierten Herstellung der Netze liegen vor allem in der hohen Präzision und Bearbeitungsgeschwindigkeit. Die UKP-Laserbearbeitung ermöglicht die Herstellung von Netzen aus Aluminium in hoher Qualität, bezogen auf die Stegbreitenabweichung von < 8 µm, mit variablen Transmissionsgraden. Ultra-short pulse (USP) laser based processing enables the production of mesh structures with different degrees of transmission. The advantages of USP-based production of mesh structures are mainly the high precision and processing speed. USP laser processing enables the production of meshes of aluminum in high quality, with respect to the mesh width deviation of < 8 µm with variable transmission degrees.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Author(s):  
M Sreekanth ◽  
R Sivakumar ◽  
M Sai Santosh Pavan Kumar ◽  
K Karunamurthy ◽  
MB Shyam Kumar ◽  
...  

This paper presents a detailed and objective review of regenerative flow turbomachines, namely pumps, blowers and compressors. Several aspects of turbomachines like design and operating parameters, working principle, flow behaviour, performance parameters and analytical and Computational Fluid Dynamics (CFD) related details have been reviewed and summarized. Experimental work has been put in perspective and the most useful results for optimized performance have been presented. Consolidated plots of specific speed-specific diameter have been plotted which can be helpful in the early stages of design. Industrial outlook involving details of suppliers from various parts of the world, their product description and applications too are included. Finally, future research work to be carried out to make these machines widespread is suggested. This review is targeted at designer engineers who would need quantitative data to work with.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shabana Urooj ◽  
Norah Muhammad Alwadai ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya ◽  
Juveriya Parmar ◽  
...  

Abstract This article has indicated optical coherent differential polarization (DP) 16 quadrature amplitude modulation (QAM) transceiver systems with free-space optical (FSO) channel in the presence of differential coding scheme. The optical coherent DP 16-QAM receiver executes the reverse process conversion of the optical signal into an electrical one that is detected to the users. The proposed optical coherent DP-16 QAM transceiver systems based FSO channel model with differential coding has been presented and compared with the previous model. However, the simulation results have confidence realization about the superiority of the proposed simulation model. Hence the proposed optical coherent DP-16 QAM transceiver systems simulation model with differential coding is verified and validated the enhancement performance based on simulation performance parameters.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ashutosh Kumar ◽  
S. K. Kakoty

The present study analyzes the effect of pressure dam depth and relief track depth on the performance of three-lobe pressure dam bearing. Different values of dam depth and relief track depth are taken in nondimensional form in order to analyze their effect. Results are plotted for different parameters against eccentricity ratios and it is shown that the effect of pressure dam depth and relief track depth has great significance on stability and other performance parameters. Study of stability and performance characteristics is undertaken simultaneously.


2018 ◽  
Vol 772 ◽  
pp. 23-27
Author(s):  
Takashi Amemiya ◽  
Toshiyuki Yasuhara

Since CNTs (carbon nanotubes) have excellent electrical and mechanical characteristics, their application as fillers for polymer matrix composites is expected to have great potential. The purpose of this study is to clarify the effect of CNT’s crystallinity quality, which is given by high temperature treatment (i.e. annealing), on the properties of CNT/polymer composites. In this study, double wall type CNT (DWNT) and multi wall type CNT (MWNT) were used and heat treated at up to 2000°C to achieve highly improved crystallinity. Electrical and mechanical properties of the CNT/polymer composites were compared with the various CNT’s crystallinity qualities as measured by ID/IG ratios. As a result, although the composites with higher quality CNTs showed considerably lower surface resistivities, however the same composites had lower Young's modulus and tensile strengths. The reason is thought to be that the high quality CNT has low surface activity and weak adhesion between the polymer and the CNT surface. This suggests that CNTs with higher quality do not always contribute to the improvement to the properties of CNT/polymer composites.


Sensor Review ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 310-318 ◽  
Author(s):  
Yan Liu ◽  
Hai Wang ◽  
Hongbo Qin ◽  
Yongqiang Xie

Purpose – This paper aims to provide a focused review on the geometrical designs for performance enhancement of piezoresistive microaccelerometers. Design/methodology/approach – By analyzing working principle and conventional geometries, the improved research proposals are sorted into three groups in terms of their anticipated objectives, including sensitivity, resonant frequency and cross-axis sensitivity. Accessible methods are outlined and their merits and demerits are described. Findings – Novel geometries obviously enhance the performance of accelerometers, and the efficacy can be further elevated by newer materials and fabrication processes. Research limitations/implications – This paper mainly focused on the improved geometrical designs for sensitivity, resonant frequency and cross-axis sensitivity. Other performance parameters or design schemes are not included in this paper. Originality/value – This paper generalizes the available geometries and methods for the enhancement of sensitivity, resonant frequency and cross-axis sensitivity in piezoresistive accelerometers design.


2010 ◽  
Vol 37-38 ◽  
pp. 1489-1492
Author(s):  
Chuan Qiong Sun ◽  
Guo Xing Sun ◽  
Ai Hua Ren ◽  
Yong De Liu

Based on the research of non-circular gear Continuously Variable Transmission (CVT), firstly the working principle of the heart-shaped gear is introduced, and then the kinematic characteristics are analyzed, lastly the feature of the heart-shaped gear CVT is obtained.


2015 ◽  
Vol 741 ◽  
pp. 806-809
Author(s):  
Ai Qin Lin ◽  
Yong Xi He

Introduced reverse engineering technology and working principle. Researched reverse design process of the complex curved surface "spider". The data were collected by means of multiple scanning measuring with laser scanner. Used Geomagic Studio software for date point cloud processed of complex curved surface. Used UG software for surface reconstruction designed. Product reduction and improvement of the design were finished rapidly and high quality. Model of spider was printed with rapid prototyping technology. Compared with physical, the model’s reliability and accuracy were verified by reverse engineering design.Keywords: complex surface; reverse engineering technology; UG; Geomagic Studio software


2011 ◽  
Vol 90-93 ◽  
pp. 1100-1105
Author(s):  
Zhi Jie Sun ◽  
Jun Min Shen ◽  
Jian Bin Zhao ◽  
Zhong Ming Su

Through theoretical calculation, systemic analysis of dynamic performance of the 64m single and double line railway steel truss bridges on the expanding condition and conventional condition. Contrast and analysis the main dynamic performance parameters of bridges on the two kinds of operating condition. In 64m steel truss bridges of Shuozhou-Huanghuagang Railway application practice proves that on expanding heavy-load condition, the main dynamic performance parameters of bridges are slightly larger than conventional condition, but the variation law of vertical acceleration of mid-span is different.


Sign in / Sign up

Export Citation Format

Share Document