Comprehensive Utilization of Carbide Slag

Author(s):  
Fenglan Han ◽  
Laner Wu
2018 ◽  
Vol 142 ◽  
pp. 02006 ◽  
Author(s):  
Xing Tan ◽  
Fuqiang Han ◽  
Fengqing Zhao

To achieve the comprehensive utilization of solid waste and reduce costs, fly ash, carbide slag, and low-clinker cement were used to produce lightweight foamed concrete block. Granulated blast-furnace slag (GBFS) was used as composition correction material in the block. The effects of curing temperature and dosage of low-clinker cement on the performance of foamed concrete block were investigated. The optimal material proportioning is obtained: fly ash 58.5%, carbide slag 20%, GBFS 10%, gypsum 1.5% and low-clinker cement 10%. The proper curing regime is “temperature rising 4h-180°C constant temperature 4h-natural cooling”. The results indicate that the compressive strength of the block reaches 3.55 MPa while the density is 616.9 kg/m3. The performance of the product meets JC/T 1062-2007 (China professional standard of foamed concrete block).


2020 ◽  
Vol 993 ◽  
pp. 1487-1495
Author(s):  
Xin Ping Lin ◽  
Ai Wei Liu ◽  
Yun Fa Feng ◽  
Qi Ling Chen ◽  
Tao Chen ◽  
...  

The recycling utilization of solid waste is an important technical means for the sustainable development of the cement industry in China. Calcium carbide slag is a special solid waste in China, which can be used for cement production with a great advantage on CO2 emission reduction. With an view to providing methodological and data support for the development of policies in the cement industry, this paper quantitatively analyzes the environmental effects/environmental benefits of the comprehensive utilization of calcium carbide slag in cement kiln by comparing the traditional system of Portland cement clinker completely produced by natural resources with the system of cement clinker produced by calcium carbide slag based on the life cycle assessment (LCA) method given in standards and specifications of ISO 14040 series. The results show that the latter system has a better effect in material saving and carbon emission reduction, will increase the energy consumption in cement production process, and also slightly increase other pollutants (e.g. SOx, NOx, etc.) emission. The GWP, AP and EP indicators of the calcium carbide slag cement clinker system decrease compared with those of the Portland cement clinker system, while other indicators do not differ much or even slightly increase.


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Jiangyan Yuan ◽  
Hongwen Ma ◽  
Zheng Luo ◽  
Xi Ma ◽  
Qian Guo

To make potassium from K-bearing rocks accessible to agriculture, processing on biotite syenite powder under mild alkaline hydrothermal conditions was carried out, in which two types of KAlSiO4 were obtained successfully. The dissolution-precipitation process of silicate rocks is a significant process in lithospheric evolution. Its effective utilization will be of importance for realizing the comprehensiveness of aluminosilicate minerals in nature. Two kinds of KAlSiO4 were precipitated in sequence during the dissolution process of biotite syenite. The crystal structures of two kinds of KAlSiO4 were compared by Rietveld structure refinements. The kinetics model derived from geochemical research was adopted to describe the dissolution behavior. The reaction order and apparent activation energy at the temperature range of 240–300 °C were 2.992 and 97.41 kJ/mol, respectively. The higher dissolution reaction rate of K-feldspar mainly relies on the alkaline solution, which gives rise to higher reaction order. During the dissolution-precipitation process of K-feldspar, two types of KAlSiO4 with different crystal structure were precipitated. This study provides novel green chemical routes for the comprehensive utilization of potassium-rich silicates.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 799
Author(s):  
Dingkun Xie ◽  
Lixiong Cai ◽  
Jie Wang

Adverse side-effects occurred in slurry foaming and thickening process when carbide slag was substituted for quicklime in HCS-AAC. Cement accelerators were introduced to modify the slurry foaming and coagulating process during pre-curing. Meanwhile, the affiliated effects on the physical-mechanical properties and hydration products were discussed to evaluate the applicability and influence of the cement accelerator. The hydration products were characterized by mineralogical (XRD) and thermal analysis (DSC-TG). The results indicated that substituting carbide slag for quicklime retarded slurry foaming and curing progress; meanwhile, the induced mechanical property declination had a negative effect on the generation of C–S–H (I) and tobermorite. Na2SO4 and Na2O·2.0SiO2 can effectively accelerate the slurry foaming rate, but the promoting effect on slurry thickening was inconspicuous. The compressive strength of HCS-AAC obviously declined with increasing cement coagulant content, which was mainly ascribed to the decrease in bulk density caused by the accelerating effect on the slurry foaming process. Dosing Na2SO4 under 0.4% has little effect on the generation of strength contributing to hydration products while the addition of Na2O·2.0SiO2 can accelerate the generation and crystallization of C–S–H, which contributed to the high activity gelatinous SiO2 generated from the reaction between Na2O·2.0SiO2 and Ca(OH)2.


2021 ◽  
Vol 218 ◽  
pp. 106845
Author(s):  
Yuping Hu ◽  
Shuimu Wu ◽  
Yingjie Li ◽  
Jianli Zhao ◽  
Shijian Lu

Author(s):  
Haifang Mao ◽  
Hongzhao Wang ◽  
Ting Tang ◽  
Shi Qixuan ◽  
Haiyan Yu ◽  
...  

Aimed on comprehensive utilization of useless by-product, a highly selective method was proposed for 5-methyl vanillin (M-Vanillin) production by employing the o-Vanillin which is a useless by-product in vanillin industry...


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 68
Author(s):  
Yali Wang ◽  
Xiaoning Han ◽  
Meina Chen ◽  
Suping Cui ◽  
Xiaoyu Ma ◽  
...  

In the cement industry, SO2 and NOx are generally removed separately. There are many problems, such as large area, high investment cost, secondary pollution and so on. Desulfurization and denitrification technology have become a frontier research direction in the field of air pollution control. In this paper, rice husk ash and carbide slag were compounded and modified to prepare modified rice husk ash-carbide slag composite absorbent, and its desulfurization and denitrification performance and mechanism were studied. The results showed that the NO conversion and SO2 conversion of the modified rice husk ash-carbide slag composite absorbent increased by 44% and 2%, respectively, at 700 °C. Fibrous calcium silicate and calcium silicoaluminate hydrates were formed during the hydration process, which made the specific surface area of the absorbent larger and provided more reactive sites. The hydration process increases the content of oxygen-containing functional groups, decreases the hydroxyl/ether C–O functional groups, and increases the content of carboxyl–COO functional groups are conducive to the denitrification reaction.


Sign in / Sign up

Export Citation Format

Share Document