scholarly journals Desulfurization and Denitrification Performance of Modified Rice Husk Ash-Carbide Slag Absorbent

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 68
Author(s):  
Yali Wang ◽  
Xiaoning Han ◽  
Meina Chen ◽  
Suping Cui ◽  
Xiaoyu Ma ◽  
...  

In the cement industry, SO2 and NOx are generally removed separately. There are many problems, such as large area, high investment cost, secondary pollution and so on. Desulfurization and denitrification technology have become a frontier research direction in the field of air pollution control. In this paper, rice husk ash and carbide slag were compounded and modified to prepare modified rice husk ash-carbide slag composite absorbent, and its desulfurization and denitrification performance and mechanism were studied. The results showed that the NO conversion and SO2 conversion of the modified rice husk ash-carbide slag composite absorbent increased by 44% and 2%, respectively, at 700 °C. Fibrous calcium silicate and calcium silicoaluminate hydrates were formed during the hydration process, which made the specific surface area of the absorbent larger and provided more reactive sites. The hydration process increases the content of oxygen-containing functional groups, decreases the hydroxyl/ether C–O functional groups, and increases the content of carboxyl–COO functional groups are conducive to the denitrification reaction.

2020 ◽  
Vol 27 (11) ◽  
pp. 3464-3476
Author(s):  
Hui Wang ◽  
Ai-lian Zhang ◽  
Lin-chun Zhang ◽  
Qian Wang ◽  
Yan Han ◽  
...  

2018 ◽  
Vol 766 ◽  
pp. 305-310 ◽  
Author(s):  
Chayanee Tippayasam ◽  
Sarochapat Sutikulsombat ◽  
Jamjuree Paramee ◽  
Cristina Leonelli ◽  
Duangrudee Chaysuwan

Geopolymer is a greener alternative cement produced from the reaction of pozzolans and strong alkali solutions. Generally, the cement industry is one of largest producers of CO2that caused global warming. For geopolymer mortar usage, Portland cement is not utilized at all. In this research, geopolymer mortars were prepared by mixing metakaolin, various wastes (fly ash, bagasse ash and rice husk ash) varied as 80:20, 50:50 and 20:80, 15M NaOH, Na2SiO3and sand. The influence of various parameters such as metakaolin to ashes ratios and pozzolans to alkali ratios on engineering properties of metakaolin blended wastes geopolymer mortar were studied. Compressive strength tests were carried out on 25 x 25 x 25 mm3cube geopolymer mortar specimens at 7, 14, 21, 28 and 91 air curing days. Physical and chemical properties were also investigated at the same times. The test results revealed that the highest compressive strength was 20% metakaolin - 80% fly ash geopolymer mortar. When the curing times increases, the compressive strength of geopolymer mortar also increases. The mixing of metakaolin and bagasse ash/rice husk ash presented lower compressive strength but higher water absorption and porosity. For FTIR results, Si-O, Al-O and Si-O-Na+were found. Moreover, the geopolymer mortar could easily plastered on the wall.


2020 ◽  
Vol 8 (1) ◽  
pp. 72-78
Author(s):  
Dwi Rasy Mujiyanti ◽  
Hayatun Nisa ◽  
Kholifatu Rosyidah ◽  
Dahlena Ariyani ◽  
Abdullah Abdullah

Tetraethyl Ortosylicate (TEOS) is a material is widely used in industrial fields. One source of silica (SiO2) is rice husk ash. In this study was determined the effect of reaction time on viscosity and density in making TEOS from silica rice husk. Silica resulting from the purification of rice husk ash is used in the TEOS manufacturing process by examining the variation of reaction time. One mole of ethanol and 0.25 mole of silica powder were added into 250 ml of round bottom flask followed by the addition of 1 gram of CuO/Al2O3 catalyst then the mixture was refluxed for 30, 35, 40, 45 and 50 hours with sufficient stirring and a temperature of 90 °C. The FTIR characterization results show that there are three main functional groups, namely the -OH, Si-O and C-O groups in the five TEOS synthesis results. Wavenumbers of the –OH functional groups obtained ranged from 3349 cm-1 - 3315 cm-1; Si-O functional groups range from 813 cm-1 - 606 cm-1 and C-O functional groups range from 1105 cm-1 - 1040 cm-1. Reaction time has no significant effect on viscosity. Reaction time has no significant effect on the density and density of the resulting TEOS.


2019 ◽  
Vol 20 (2) ◽  
pp. 195
Author(s):  
Yunanda FR ◽  
Suriati Eka Putri ◽  
Hasri Hasri ◽  
Ramdani Ramdani

ABSTRAK Penelitian ini bertujuan untuk mengetahui pH optimum sintesis gel metasilikat sekam padi sebagai media tumbuh kristal tunggal kalsium tartrat tetrahidrat (CaTT). Tahapan penelitian ini meliputi preparasi sampel, pembentukan gel metasilikat, sintesis kristal CaTT dan karakterisasi gel metasilikat. Abu sekam padi yang digunakan mengandung SiO2 sebesar 98,45% berpotensi untuk membentuk filtrat natrium silikat (Na2SiO3). Filtrat natrium silikat direaksikan dengan asam tartrat (C4H6O6) menghasilkan gel metasilikat pada pH 5,00; 5,25; 5,50; 5,75 dan 6,00. Supernatan kalsium klorida (CaCl¬2) berdifusi ke dalam gel membentuk kristal CaTT berwarna putih jernih sebanyak 0,2649 g pada pH optimum 5,25. Analisis gugus fungsi gel metasilikat menggunakan spektroskopi FTIR memberikan serapan yang khas untuk gugus fungsi –OH pada 3400,05 cm-1 dan 920,05 cm-1, gugus fungsi C=O pada 1622,13 cm-1 dan C-O pada 1346,31 cm-1, serta gugus Si-O-Si pada 1064,71 cm-1. Karakterisasi gel metasilikat menggunakan XRD mengindikasikan bahwa struktur gel metasilikat hasil sintesis tersusun atas garam Na2C4H4O6.2H2O, senyawa SiO2 dan C-grafit. Berdasarkan analisis gugus fungsi menggunakan FTIR dan karakterisasi menggunakan XRD, dapat disimpulkan bahwa sekam padi berpotensi untuk dijadikan gel metasilikat sebagai media tumbuh kristal tunggal CaTT. Kata kunci: Sekam padi, Natrium Silikat, Gel metasilikat, Kalsium tartrat tetrahidrat ABSTRACT The aims of this study was to determine the optimum pH of metasilicate gel rice husk as medium to grow single crystal of calcium tartrate tetrahydrate (CaC4H4O6.4H2O). This research was carried out inseveral stage namely sample preparation, metasilicate gel synthesis, crystal CaTT synthesis, and metasilicate gel characterization. Rice husk ash that used content SiO2 of 98.45 %, it was potential to be a sodium silicate filtrate. Filtrate of sodium silicate was reacted with tartrat acid (C4H6O6) and produce metasilicate gel with pH 5,00; 5,25; 5,50; 5,75 and 6,00. The supernatant of calcium chloride (CaCl¬2) diffuse into the gel and formed the clear white crystal CaTT as much as 0,2649 g at the optimum pH 5,25. Analysis of functional groups of metasilicate gel by FTIR provides the specific absorption of –OH group at 3400.05 cm-1 and 920.05 cm-1, C=O group at 1622.13 cm-1 and C-O group at 1346.31 cm-1, and the Si-O-Si group at 1064.71 cm-1. Characterization of gel metasilicate by XRD indicated that metasilicate gel produced formed on Na2C4H4O6.2H2O, compound of SiO2 and C-Grafit. Based on the analysis of functional groups by FTIR and characterization by XRD, it was concluded that the rice husk was potentially to be a sources of metasilicate gel as medium to grow single crystal of CaTT. Keywords: Rice Husk, Sodium Silicate, Gel metasilicate, Calcium tartrate tetrahydrate


In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


2014 ◽  
Vol 27 (2) ◽  
pp. 148-160
Author(s):  
Hassan K. Hassan ◽  
Najla J. Al-Amiri ◽  
Mohammed M. Yassen

1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


2018 ◽  
Vol 60 (4) ◽  
pp. 3-7
Author(s):  
Thi To Yen Nguyen ◽  
Phung Anh Nguyen ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Ky Phuong Ha Huynh ◽  
...  
Keyword(s):  
Red Mud ◽  

Sign in / Sign up

Export Citation Format

Share Document