Chemical Potentials of Gases, Electrons, Crystals, and Defects

Author(s):  
Long-Qing Chen
Keyword(s):  
2003 ◽  
Vol 68 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Peter Politzer ◽  
Abraham F. Jalbout ◽  
Ping Jin

We have tested several approximate formulas that relate atomic and molecular energies to the electrostatic potentials at the nuclei, V0 and V0,A, respectively. They are based upon the assumption that the chemical potentials can be neglected relative to V0 and V0,A. Exact, Hartree-Fock and density-functional values were used for the latter. The results are overall encouraging; the errors in the energies generally decrease markedly as the nuclear charges Z increase and the assumptions become more valid. Improvement is needed, however, in fitting the V0 and V0,A to Z.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veton Haziri ◽  
Tu Pham Tran Nha ◽  
Avni Berisha ◽  
Jean-François Boily

AbstractGas bubbles grown on solids are more than simple vehicles for gas transport. They are charged particles with surfaces populated with exchangeable ions. We here unveil a gateway for alkali metal ion transport between oxygen bubbles and semi-conducting (iron oxide) and conducting (gold) surfaces. This gateway was identified by electrochemical impedance spectroscopy using an ultramicroelectrode in direct contact with bubbles pinned onto these solid surfaces. We show that this gateway is naturally present at open circuit potentials, and that negative electric potentials applied through the solid enhance ion transport. In contrast, positive potentials or contact with an insulator (polytetrafluoroethylene) attenuates transport. We propose that this gateway is generated by overlapping electric double layers of bubbles and surfaces of contrasting (electro)chemical potentials. Knowledge of this ion transfer phenomenon is essential for understanding electric shielding and reaction overpotential caused by bubbles on catalysts. This has especially important ramifications for predicting processes including mineral flotation, microfluidics, pore water geochemistry, and fuel cell technology.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mohammad Mehdi Moshiri ◽  
Najmeh Nozhat

AbstractIn this paper, an optical smart multibeam cross dipole nano-antenna has been proposed by combining the absorption characteristic of graphene and applying different arrangements of directors. By introducing a cross dipole nano-antenna with two V-shaped coupled elements, the maximum directivity of 8.79 dBi has been obtained for unidirectional radiation pattern. Also, by applying various arrangements of circular sectors as director, different types of radiation pattern such as bi- and quad-directional have been attained with directivities of 8.63 and 8.42 dBi, respectively, at the wavelength of 1550 nm. The maximum absorption power of graphene can be tuned by choosing an appropriate chemical potential. Therefore, the radiation beam of the proposed multibeam cross dipole nano-antenna has been controlled dynamically by applying a monolayer graphene. By choosing a suitable chemical potential of graphene for each arm of the suggested cross dipole nano-antenna without the director, the unidirectional radiation pattern shifts ± 13° at the wavelength of 1550 nm. Also, for the multibeam nano-antenna with different arrangements of directors, the bi- and quad-directional radiation patterns have been smartly modified to uni- and bi-directional ones with the directivities of 10.1 and 9.54 dBi, respectively. It is because of the graphene performance as an absorptive or transparent element for different chemical potentials. This feature helps us to create a multipath wireless link with the capability to control the accessibility of each receiver.


Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 205-213
Author(s):  
Anna Senger ◽  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is designed to investigate the properties of high-density QCD matter with multi-differential measurements of hadrons and leptons, including rare probes such as multi-strange anti-hyperons and charmed particles. The research program covers the study of the high-density equation-of-state of nuclear matter and the exploration of the QCD phase diagram at large baryon chemical potentials, including the search for quark matter and the critical endpoint of a hypothetical 1st order phase transition. The CBM setup comprises detector systems for the identification of charged hadrons, electrons, and muons; for the determination of collision centrality and the orientation of the reaction plane; and a free-streaming data read-out and acquisition system, which allows online reconstruction and selection of events up to reaction rates of 10 MHz. In this article, emphasis is placed on the measurement of muon pairs in Au-Au collisions at FAIR beam energies, which are unique probes used to determine the temperature of the fireball, and hence to search for a caloric curve of QCD matter. Simultaneously, the subthreshold production of charmonium can be studied via its dimuon decay in order to shed light on the microscopic structure of QCD matter at high baryon densities. The CBM setup with focus on dimuon measurements and the results of the corresponding physics performance studies will be presented.


Author(s):  
Eugene Ostrovskiy ◽  
Yi-Lin Huang ◽  
Eric D. Wachsman

The presence of gas molecules alters the surface cation segregation process on perovskites.


1979 ◽  
Vol 43 (326) ◽  
pp. 261-268 ◽  
Author(s):  
A. Meunier ◽  
B. Velde

SummaryClassical clay mineralogy determinations and electron microprobe analyses of weathering minerals developed in altered two-mica granites indicate that the chemical forces that produce new minerals are often constrained to small volumes, frequently on the scale of a mineral grain or contact between two grains in the granite.Chemical potentials such as pH, alkali and alkaline earth and silica activity in the altering aqueous solutions provoke a destabilization of pre-existing minerals, which recrystallize locally to give a new multimineral product. The chemical composition of the new phases is largely governed by the relative concentrations of the elements present in the former minerals.Three mineral facies were observed in the weathered granites: initially a sericite-beidellitic type, then a beidellite-kaolinitic type, and finally a last stage kaolinite-oxide facies assemblage. The position of each facies is not restricted to a given depth in the profile but the relative proportions of each facies found in a thin-section size sample change towards the kaolinite-oxide facies.The global rock chemistry reflects the type facies predominant in each sample. The first two facies are roughly silica conservative while the kaolinite-oxide facies loses silica as well as alkali and alkaline earths.Geochemical and clay mineral studies of rock alteration should consider problems of mineral genesis at very localized sites.


2021 ◽  
Vol 125 (5) ◽  
pp. 3055-3065
Author(s):  
Ya Bai ◽  
Jinjia Liu ◽  
Pengju Ren ◽  
Wenping Guo ◽  
Tao Wang ◽  
...  

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Alejandro Cabo-Bizet ◽  
Davide Cassani ◽  
Dario Martelli ◽  
Sameer Murthy

Abstract We systematically analyze the large-N limit of the superconformal index of $$ \mathcal{N} $$ N = 1 superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS5 theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order N into the torus.


Sign in / Sign up

Export Citation Format

Share Document