A Compact Ultra-Wideband (UWB) Antenna with Dual Band-Notched Characteristic Based on Small-Size Electromagnetic Bandgap (EBG) Structure

Author(s):  
Mahadu A. Trimukhe ◽  
Balaji G. Hogade
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Liu ◽  
Ziqiang Xu

A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 777 ◽  
Author(s):  
Anees Abbas ◽  
Niamat Hussain ◽  
Min-Joo Jeong ◽  
Jiwoong Park ◽  
Kook Sun Shin ◽  
...  

This paper presents the design and realization of a compact ultra-wideband (UWB) antenna with a rectangular notch wireless area network (WLAN) band that has controllable notched bandwidth and center frequency. The UWB characteristics of the antenna are achieved by truncating the lower ends of the rectangular microstrip patch, and the notch characteristics are obtained by using electromagnetic bandgap (EBG) structures. EBGs consist of two rectangular metallic conductors loaded on the back of the radiator, which is connected to the patch by shorting pins. A rectangular notch at the WLAN band with high selectivity is realized by tuning the individual resonant frequencies of the EBGs and merging them. Furthermore, the results show that the bandwidth and frequency of the rectangular notch band could be controlled according to the on-demand rejection band applications. In the demonstration, the rectangular notch band was shifted to X-band satellite communication by tuning the EBG parameters. The simulated and measured results show that the proposed antenna has an operational bandwidth from 3.1–12.5 GHz for |S11| < -10 with a rectangular notch band from 5–6 GHz, thus rejecting WLAN band signals. The antenna also has additional advantages: the overall size of the compact antenna is 16 × 25 × 1.52 mm3 and it has stable gain and radiation patterns.


2016 ◽  
Vol 9 (4) ◽  
pp. 923-929 ◽  
Author(s):  
Yingjiang Guo ◽  
Xiaohong Tang ◽  
Kai Da Xu ◽  
Jing Ai

A new planar microstrip-fed monopole ultra-wideband (UWB) antenna with dual notched bands has been presented. By employing a simple dual-mode resonator with two symmetrical outer high-impedance lines beside the microstrip feed line of the proposed UWB antenna, two controllable rejection bands with high-frequency selectivity are created. The parametric studies of the proposed structure are explored for the dual band-notched operating mechanism. Finally, the experimental results, including return losses, radiation patterns, and peak gains are shown, declaring that the proposed antenna has good impedance matching performance and radiation pattern properties.


Author(s):  
Zhonghong Du ◽  
Xiaohui Zhang ◽  
Peiyu Qin ◽  
Yanning Yuan ◽  
Jiangfan Liu ◽  
...  

Abstract A compact four-element ultra-wideband (UWB) multiple-input–multiple-output (MIMO) antenna with dual polarization and dual-notched capabilities was developed and fabricated. The MIMO antenna is composed of four orthogonally placed half-cutting UWB antenna elements. This orthogonal placement improves the isolation. Furthermore, an L-shaped slot and a continuous bending slot are etched to realize the band-rejection function in the WiMAX and WLAN bands. The result shows that the antenna achieved operating bands of 2.9–16.5 GHz (140.2%, S11 < −10 dB), fully covering the UWB (3.1–10.6 GHz). The port isolation is greater than 23 dB in the frequency band of interest, excluding two rejected bands. Moreover, the MIMO antenna has excellent diversity performance, such as a low envelope correlation coefficient (<0.004), high diversity gain (approximately 10 dB), and good omnidirectional radiation characteristics.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
K. A. Alshamaileh ◽  
M. J. Almalkawi ◽  
V. K. Devabhaktuni

We propose an ultra-wideband (UWB) antipodal Vivaldi antenna (AVA) with high-Qstopband characteristics based on compact electromagnetic bandgap (EBG) structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed line to suppress the frequency components at 3.6–3.9 and 5.6–5.8 GHz (i.e., WiMAX and ISM bands, resp.). Simulated and measured results show a voltage standing wave ratio (VSWR) below 2 for the entire 3.1–10.6 GHz band with high attenuation at the two selected subbands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates. Furthermore, the flexibility it offers in terms of controlling both the number and locations of the band-reject frequencies is advantageous for antennas with nonuniform flares as in the AVA.


2012 ◽  
Vol 195-196 ◽  
pp. 13-16
Author(s):  
Wen Bo Zeng ◽  
Jia Zhao ◽  
Bao Zhong Ke ◽  
Qi Qi Wu

An ultra-wideband (UWB) printed antenna with dual band-notched characteristic is presented in this paper. The proposed antenna is composed of a semi-circular patch fed by a tapered coplanar waveguide (CPW) and an unclosed ground plane, which are printed onto the same side of a FR4 printed circuit board (PCB) with an overall size of 30 mm × 30 mm × 1.5 mm. By embedding a simple arc-shaped slot in the patch and adding a T-shaped strip on the top of the patch, two notched frequency bands for rejection of WiMAX and WLAN system can be realized. The characteristics of the proposed antenna are investigated by using the software HFSS and validated experimentally, both simulated and measured results show that the proposed antenna prototype achieves good impedance matching over an frequency band from 2.1011.40 GHz for VSWR2 with two notched bands over the frequency range of 5-5.95 GHz and 3.1-3.9 GHz. Furthermore, a relatively stable gain and suitable radiation patterns are also achieved in both lower and upper UWB frequency band.


Sign in / Sign up

Export Citation Format

Share Document