Prediction of Ticket Prices for Public Transport Using Linear Regression and Random Forest Regression Methods: A Practical Approach Using Machine Learning

Author(s):  
Aditi ◽  
Akash Dutta ◽  
Aman Dureja ◽  
Salil Abrol ◽  
Ajay Dureja
2019 ◽  
Vol 11 (8) ◽  
pp. 920 ◽  
Author(s):  
Syed Haleem Shah ◽  
Yoseline Angel ◽  
Rasmus Houborg ◽  
Shawkat Ali ◽  
Matthew F. McCabe

Developing rapid and non-destructive methods for chlorophyll estimation over large spatial areas is a topic of much interest, as it would provide an indirect measure of plant photosynthetic response, be useful in monitoring soil nitrogen content, and offer the capacity to assess vegetation structural and functional dynamics. Traditional methods of direct tissue analysis or the use of handheld meters, are not able to capture chlorophyll variability at anything beyond point scales, so are not particularly useful for informing decisions on plant health and status at the field scale. Examining the spectral response of plants via remote sensing has shown much promise as a means to capture variations in vegetation properties, while offering a non-destructive and scalable approach to monitoring. However, determining the optimum combination of spectra or spectral indices to inform plant response remains an active area of investigation. Here, we explore the use of a machine learning approach to enhance the estimation of leaf chlorophyll (Chlt), defined as the sum of chlorophyll a and b, from spectral reflectance data. Using an ASD FieldSpec 4 Hi-Res spectroradiometer, 2700 individual leaf hyperspectral reflectance measurements were acquired from wheat plants grown across a gradient of soil salinity and nutrient levels in a greenhouse experiment. The extractable Chlt was determined from laboratory analysis of 270 collocated samples, each composed of three leaf discs. A random forest regression algorithm was trained against these data, with input predictors based upon (1) reflectance values from 2102 bands across the 400–2500 nm spectral range; and (2) 45 established vegetation indices. As a benchmark, a standard univariate regression analysis was performed to model the relationship between measured Chlt and the selected vegetation indices. Results show that the root mean square error (RMSE) was significantly reduced when using the machine learning approach compared to standard linear regression. When exploiting the entire spectral range of individual bands as input variables, the random forest estimated Chlt with an RMSE of 5.49 µg·cm−2 and an R2 of 0.89. Model accuracy was improved when using vegetation indices as input variables, producing an RMSE ranging from 3.62 to 3.91 µg·cm−2, depending on the particular combination of indices selected. In further analysis, input predictors were ranked according to their importance level, and a step-wise reduction in the number of input features (from 45 down to 7) was performed. Implementing this resulted in no significant effect on the RMSE, and showed that much the same prediction accuracy could be obtained by a smaller subset of indices. Importantly, the random forest regression approach identified many important variables that were not good predictors according to their linear regression statistics. Overall, the research illustrates the promise in using established vegetation indices as input variables in a machine learning approach for the enhanced estimation of Chlt from hyperspectral data.


2020 ◽  
Vol 12 (5) ◽  
pp. 41-51
Author(s):  
Shaimaa Mahmoud ◽  
◽  
Mahmoud Hussein ◽  
Arabi Keshk

Opinion mining in social networks data is considered as one of most important research areas because a large number of users interact with different topics on it. This paper discusses the problem of predicting future products rate according to users’ comments. Researchers interacted with this problem by using machine learning algorithms (e.g. Logistic Regression, Random Forest Regression, Support Vector Regression, Simple Linear Regression, Multiple Linear Regression, Polynomial Regression and Decision Tree). However, the accuracy of these techniques still needs to be improved. In this study, we introduce an approach for predicting future products rate using LR, RFR, and SVR. Our data set consists of tweets and its rate from 1:5. The main goal of our approach is improving the prediction accuracy about existing techniques. SVR can predict future product rate with a Mean Squared Error (MSE) of 0.4122, Linear Regression model predict with a Mean Squared Error of 0.4986 and Random Forest Regression can predict with a Mean Squared Error of 0.4770. This is better than the existing approaches accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


Measurement ◽  
2020 ◽  
pp. 108899
Author(s):  
Madi Keramat-Jahromi ◽  
Seyed Saeid Mohtasebi ◽  
Hossein Mousazadeh ◽  
Mahdi Ghasemi-Varnamkhasri ◽  
Maryam Rahimi-Movassagh

2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2019 ◽  
Vol 90 (3) ◽  
pp. e33.1-e33
Author(s):  
K Li ◽  
VN Vakharia ◽  
R Sparks ◽  
LGS França ◽  
A McEvoy ◽  
...  

ObjectivesOptimal trajectory planning for cranial laser interstitial thermal therapy (cLITT) in drug resistant focal mesial temporal lobe epilepsy (MTLE).DesignA composite ablation score of ablated AHC minus ablated PHG volumes were calculated and normalised. Random forest and linear regression were implemented to predict composite ablation scores and determine the optimal entry and target point combinations to maximize this.SubjectsTen patients with hippocampal sclerosis were included.MethodsComputer Assisted Planning (CAP) cLITT trajectories were generated using entry regions that include the inferior occipital gyri (IOG), middle occipital gyri (MOG), inferior temporal gyri (ITG) and middle temporal gyri (MTG). Target points were varied by sequential erosions and transformations of the centroid of the amygdala. In total 760 trajectory combinations were generated per patient and ablation volumes were calculated based on a conservative 15 mm maximum ablation diameter.ResultsLinear regression was superior to random forest predictions. Linear regression indicated that maximal composite ablation scores were associated with entry points that clustered around the junction of the IOG, MOG and MTG. The optimal target point was a translation of the centroid of the amygdala anteriorly and medially.ConclusionsMachine learning techniques accurately predict composite ablation scores with linear regression outperforming the random forest approach. Optimal CAP entry points for cLITT maximize ablation of the AHC and spare the PHG.


2020 ◽  
Author(s):  
Peijia Liu ◽  
Dong Yang ◽  
Shaomin Li ◽  
Yutian Chong ◽  
Wentao Hu ◽  
...  

Abstract Background The utilization of estimating-GFR equations is critical for kidney disease in the clinic. However, the performance of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has not improved substantially in the past eight years. Here we hypothesized that random forest regression(RF) method could go beyond revised linear regression, which is used to build the CKD-EPI equationMethods 1732 participants were enrolled in this study totally (1333 in development data set from Tianhe District and 399 in external data set Luogang District). Recursive feature elimination (RFE) is applied to the development data to select important variables and build random forest models. Then same variables were used to develop the estimated GFR equation with linear regression as a comparison. The performances of these equations are measured by bias, 30% accuracy , precision and root mean square error(RMSE).Results Of all the variables, creatinine, cystatin C, weight, body mass index (BMI), age, uric acid(UA), blood urea nitrogen(BUN), hematocrit(HCT) and apolipoprotein B(APOB) were selected by RFE method. The results revealed that the overall performance of random forest regression models ascended the revised regression models based on the same variables. In the 9-variable model, RF model was better than revised linear regression in term of bias, precision ,30%accuracy and RMSE(0.78 vs 2.98, 16.90 vs 23.62, 0.84 vs 0.80, 16.88 vs 18.70, all P<0.01 ). In the 4-variable model, random forest regression model showed an improvement in precision and RMSE compared with revised regression model. (20.82 vs 25.25, P<0.01, 19.08 vs 20.60, P<0.001). Bias and 30%accurancy were preferable, but the results were not statistically significant (0.34 vs 2.07, P=0.10, 0.8 vs 0.78, P=0.19, respectively).Conclusions The performances of random forest regression models are better than revised linear regression models when it comes to GFR estimation.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 153
Author(s):  
Eva Melišová ◽  
Adam Vizina ◽  
Martin Hanel ◽  
Petr Pavlík ◽  
Petra Šuhájková

Evaporation is an important factor in the overall hydrological balance. It is usually derived as the difference between runoff, precipitation and the change in water storage in a catchment. The magnitude of actual evaporation is determined by the quantity of available water and heavily influenced by climatic and meteorological factors. Currently, there are statistical methods such as linear regression, random forest regression or machine learning methods to calculate evaporation. However, in order to derive these relationships, it is necessary to have observations of evaporation from evaporation stations. In the present study, the statistical methods of linear regression and random forest regression were used to calculate evaporation, with part of the models being designed manually and the other part using stepwise regression. Observed data from 24 evaporation stations and ERA5-Land climate reanalysis data were used to create the regression models. The proposed regression formulas were tested on 33 water reservoirs. The results show that manual regression is a more appropriate method for calculating evaporation than stepwise regression, with the caveat that it is more time consuming. The difference between linear and random forest regression is the variance of the data; random forest regression is better able to fit the observed data. On the other hand, the interpretation of the result for linear regression is simpler. The study introduced that the use of reanalyzed data, ERA5-Land products using the random forest regression method is suitable for the calculation of evaporation from water reservoirs in the conditions of the Czech Republic.


Sign in / Sign up

Export Citation Format

Share Document