Recent Cases in Advanced Micro/Nanoelectronics, Microsystems and MEMS Devices and Technologies

2021 ◽  
pp. 109-159
Author(s):  
Arief Suriadi Budiman
Keyword(s):  
2017 ◽  
Vol 137 (1) ◽  
pp. 46-47
Author(s):  
Takeshi Kohno ◽  
Masato Mihara ◽  
Ataru Tanabe ◽  
Takashi Abe ◽  
Masanori Okuyama ◽  
...  

2000 ◽  
Author(s):  
D. J. Chang ◽  
S. T. Amimoto ◽  
A. D. Birkitt
Keyword(s):  

2001 ◽  
Author(s):  
A. D. Johnson ◽  
Vikas Gupta
Keyword(s):  

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


2021 ◽  
pp. 1-1
Author(s):  
Mustafa Mert Torunbalci ◽  
Hasan Dogan Gavcar ◽  
Ferhat Yesil ◽  
Said Emre Alper ◽  
Tayfun Akin
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Rafel Perelló-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

CMOS-MEMS resonators have become a promising solution thanks to their miniaturization and on-chip integration capabilities. However, using a CMOS technology to fabricate microelectromechanical system (MEMS) devices limits the electromechanical performance otherwise achieved by specific technologies, requiring a challenging readout circuitry. This paper presents a transimpedance amplifier (TIA) fabricated using a commercial 0.35-µm CMOS technology specifically oriented to drive and sense monolithically integrated CMOS-MEMS resonators up to 50 MHz with a tunable transimpedance gain ranging from 112 dB to 121 dB. The output voltage noise is as low as 225 nV/Hz1/2—input-referred current noise of 192 fA/Hz1/2—at 10 MHz, and the power consumption is kept below 1-mW. In addition, the TIA amplifier exhibits an open-loop gain independent of the parasitic input capacitance—mostly associated with the MEMS layout—representing an advantage in MEMS testing compared to other alternatives such as Pierce oscillator schemes. The work presented includes the characterization of three types of MEMS resonators that have been fabricated and experimentally characterized both in open-loop and self-sustained configurations using the integrated TIA amplifier. The experimental characterization includes an accurate extraction of the electromechanical parameters for the three fabricated structures that enables an accurate MEMS-CMOS circuitry co-design.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 414
Author(s):  
Marta Maria Kluba ◽  
Jian Li ◽  
Katja Parkkinen ◽  
Marcus Louwerse ◽  
Jaap Snijder ◽  
...  

Several Silicon on Insulator (SOI) wafer manufacturers are now offering products with customer-defined cavities etched in the handle wafer, which significantly simplifies the fabrication of MEMS devices such as pressure sensors. This paper presents a novel cavity buried oxide (BOX) SOI substrate (cavity-BOX) that contains a patterned BOX layer. The patterned BOX can form a buried microchannels network, or serve as a stop layer and a buried hard-etch mask, to accurately pattern the device layer while etching it from the backside of the wafer using the cleanroom microfabrication compatible tools and methods. The use of the cavity-BOX as a buried hard-etch mask is demonstrated by applying it for the fabrication of a deep brain stimulation (DBS) demonstrator. The demonstrator consists of a large flexible area and precisely defined 80 µm-thick silicon islands wrapped into a 1.4 mm diameter cylinder. With cavity-BOX, the process of thinning and separating the silicon islands was largely simplified and became more robust. This test case illustrates how cavity-BOX wafers can advance the fabrication of various MEMS devices, especially those with complex geometry and added functionality, by enabling more design freedom and easing the optimization of the fabrication process.


Sign in / Sign up

Export Citation Format

Share Document