A Three-Dimensional Terminal Guidance Law for Unpowered Gliding Vehicles Considering Dynamic Pressure and Impact Angle Constraints

2021 ◽  
pp. 453-465
Author(s):  
Wu Meng ◽  
Chi Fenghua ◽  
Tian Shichao ◽  
Qi Zheng ◽  
Xu Cong
2021 ◽  
Vol 11 (22) ◽  
pp. 10857
Author(s):  
Mingyu Cong ◽  
Xianghong Cheng ◽  
Zhiquan Zhao ◽  
Zhijun Li

Cooperative terminal guidance with impact angle constraint is a key technology to achieve a saturation attack and improve combat effectiveness. The present study envisaged cooperative terminal guidance with impact angle constraint for multiple missiles. In this pursuit, initially, the three-dimensional cooperative terminal guidance law with multiple constraints was studied. The impact time cooperative strategy of virtual leader missile and follower missiles was designed by introducing virtual leader missiles. Subsequently, based on the distributed model prediction control combined with the particle swarm optimization algorithm, a cooperative terminal guidance algorithm was designed for multiple missiles with impact angle constraint that met the guidance accuracy. Finally, the effectiveness of the algorithm was verified using simulation experiments.


2018 ◽  
Vol 122 (1257) ◽  
pp. 1811-1825
Author(s):  
C.W. Jiang ◽  
G.F. Zhou ◽  
B. Yang ◽  
C.S. Gao ◽  
W.X. Jing

ABSTRACTAiming at three-dimensional (3D) terminal guidance problem, a novel guidance model is established in this paper, in which line-of-sight (LOS) range is treated as an independent variable, describing the relative motion between the vehicle and the target. The guidance model includes two differential equations that describe LOS’s pitch and yaw motions in which the pitch motion is separately decoupled. This model avoids the inaccuracy of simplified two-dimensional (2D) guidance model and the complexity of 3D coupled guidance model, which not only maintains the accuracy but also simplifies the guidance law design. The application of this guidance model is studied for optimal re-entry guidance law with impact angle constraint, which is presented in the form of normal overload. Compared with optimal guidance laws based on traditional guidance model, the proposed one based on novel guidance model is implemented with the LOS range instead of time-to-go, which avoids the problem of the time-to-go estimation of traditional optimal guidance laws. Finally, the correctness and validity of the guidance model and guidance law are verified by numerical simulation. The guidance model and guidance law proposed in this paper provide a new way for the design of terminal guidance.


Author(s):  
Zhengyu Guo ◽  
Chaolei Wang ◽  
Hang Qian ◽  
Zhiguo Han ◽  
Jingxian Zhang

A distributed multi-missile cooperative guidance law based on the finite time theory is proposed to solve the terminal guidance problem of three-dimensional multi-missiles cooperative interception of large maneuvering target. According to the finite time consistency theory, an adaptive guidance law based on the integral sliding mode is designed to ensure that all missiles can reach the target at the same time in the terminal guidance process. The longitudinal and lateral acceleration of the line of sight are based on the guidance law of the fast terminal sliding mode surface. The terminal attack angle is constrained, so that the terminal attack Angle can reach the expected value in finite time. The simulation results show that the designed guidance law can achieve the cooperative attack on the maneuvering targets.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29755-29763
Author(s):  
Mu Lin ◽  
Xiangjun Ding ◽  
Chunyan Wang ◽  
Li Liang ◽  
Jianan Wang

Author(s):  
Jeong-Hun Kim ◽  
Sang-Sup Park ◽  
Kuk-Kwon Park ◽  
Chang-Kyung Ryoo

Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


Author(s):  
Peng Li ◽  
Qi Liu ◽  
Chen-Yu He ◽  
Xiao-Qing Liu

This paper investigates the three-dimensional guidance with the impact angle constraint, actuator faults and input constraint. Firstly, an adaptive three-dimensional guidance law with impact angle constraint is designed by using the terminal sliding mode control and nonhomogeneous disturbance observer. Then, in order to solve the problem of the input saturation and actuator faults, an adaptive anti-saturation fault-tolerant three-dimensional law is proposed by using the hyperbolic tangent function based on the passive fault-tolerant control. Finally, the effectiveness of the designed guidance laws is verified by using the Lyapunov function and simulation.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 180467-180481 ◽  
Author(s):  
Ye Tian ◽  
Yuanli Cai ◽  
Zhenhua Yu ◽  
Yifan Deng

Sign in / Sign up

Export Citation Format

Share Document