Trajectory-shaping Guidance with Final Speed and Load Factor Constraints

Author(s):  
Wanchun Chen ◽  
Hao Zhou ◽  
Wenbin Yu ◽  
Liang Yang
Keyword(s):  

2015 ◽  
Vol 56 ◽  
pp. 42-52 ◽  
Author(s):  
Wenbin Yu ◽  
Wanchun Chen
Keyword(s):  


Author(s):  
J. V. Muruga Lal Jeyan ◽  
Akhila Rupesh ◽  
Jency Lal

The aerodynamic module combines the three-dimensional nonlinear lifting surface theory approach, which provides the effective propagated incident velocity and angle of attack at the blade section separately, and a two-dimensional panel method for steady axisymmetric and non-symmetric flow has to be involved to obtain the 3D pressure and velocity distribution on the wind mill model blade. Wind mill and turbines have become an economically competitive form of efficiency and renewable work generation. In the abroad analytical studies, the wind turbine blades to be the target of technological improvements by the use of highly possible systematic , aerodynamic and design, material analysis, fabrication and testing. Wind energy is a peculiar form of reduced form of density source of power. To make wind power feasible, it is important to optimize the efficiency of converting wind energy into productivity source. Among the different aspects involved, rotor aerodynamics is a key determinant for achieving this goal. There is a tradeoff between thin airfoil and structural efficiency. Both of which have a strong impact on the cost of work generated. Hence the design and analysis process for optimum design requires determining the load factor, pressure and velocity impact and optimum thickness distribution by finding the effect of blade shape by varying thickness on the basis of both the aerodynamic output and the structural weight.



2020 ◽  
Vol 17 ◽  
Author(s):  
Bhumin K. Pathak ◽  
Meenakshi Raghav ◽  
Arti R. Thakkar ◽  
Bhavin A. Vyas ◽  
Pranav J. Shah

Background: Poor dissolution of Etodolac is one of the major challenges in achieving the desired therapeutic effect in oral therapy. Objective: This study aimed to assess the potential of liquisolid compact technique in increasing the rate of dissolution of Etodolac and thus its bioavailability. Methods: Liquisolid compacts were prepared using PEG 400, Avicel PH-200 and Aerosil 200 as non-volatile liquid, carrier and coating material respectively. Optimisation was carried out by applying a 32 full factorial design using Design expert software 11.0.3.0 to examine the effects of independent variables (load factor and carrier: coating ratio) on dependent variables (angle of repose and % cumulative drug release at 30 min [Q 30 min]).Assessment of bioavailability was based on pharmacokinetic study in rabbits and pharmacodynamics evaluation in rats respectively. Results: The formulation M3 was identified as the optimised formulation based on the better flow (lower angle of repose) and a higher rate of dissolution (Q 30 min >95%). The higher dissolution rate could be due to conversion of Etodolac into an amorphous molecularly dispersed state, availability of larger surface area, enhancement of aqueous solubility and enhanced wetting of drug particles. Studies with DSC, XRD, and SEM verified the transformation of Etodolac from crystalline to amorphous state, a key factor responsible for improving the dissolution rate. Pharmacokinetic profile of M3 was prominent, demonstrating higher absorption of Etodolac in comparison of oral suspension and immediate-release conventional tablets in rabbits. Liquisolid formulation exhibited 27% increment in paw thickness as compared to 57% and 46% increments for oral suspension and immediate-release conventional tablets respectively, after 7 hrs in carrageenan-induced paw model in rats. Conclusion: The results indicated liquisolid compact technique to be a promising strategy to enhance the bioavailability of Etodolac.



2020 ◽  
Vol 29 (1) ◽  
pp. 195-202
Author(s):  
Tran Anh Dung ◽  
Mai Van Tham ◽  
Do Xuan Quy ◽  
Tran The Truyen ◽  
Pham Van Ky ◽  
...  

AbstractThis paper presents simulation calculations and experimental measurements to determine the dynamic load factor (DLF) of train on the urban railway in Vietnam. Simulation calculations are performed by SIMPACK software. Dynamic measurement experiments were conducted on Cat Linh – Ha Dong line. The simulation and experimental results provide the DLF values with the largest difference of 2.46% when the train speed varies from 0 km/h to 80 km/h



Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].



The circumstances are discussed under which orthogonal relations exist between the elastic critical modes of plane frames subjected to proportional loading. Orthogonal relations may be obtained provided the loading does not produce any components of deformation associated with any of the critical modes at arbitrary levels of the load factor, and provided no part of the structure remains statically indeterminate due to bar forces when all rigid joints are replaced by pin joints. When at arbitrary load factors, the structure deforms with components associated with any of the buckling modes, the elastic failure load is not identical with the lowest elastic critical load, although for many frames the two loads may be very close. A general expression is obtained which reveals the relation between the deformations at an arbitrary load level and the deflexions given by linear analysis. The difference between the elastic failure load and the elastic critical load is discussed, and an approximate treatment applicable to certain types of frame and associated loading is developed.



Author(s):  
Guomin Ji ◽  
Nabila Berchiche ◽  
Sébastien Fouques ◽  
Thomas Sauder ◽  
Svein-Arne Reinholdtsen

The paper addresses the structural integrity assessment of lifeboat launched from floating production, storage and offloading (FPSO) vessels. The study is based on long-term drop lifeboat simulations accounting for more than 50 years of hindcast data of metocean conditions and corresponding FPSO motions. Selection of the load cases and strength analyses with high computational time is a challenge. The load cases analyzed are those corresponding to the 99th percentile of long term distribution of indicators for large slamming loads (CARXZ) or large submergence (Imaxsub). For six selected cases, the time-varying pressure distribution on the lifeboat hull during and after water impact is calculated by CFD simulations using StarCCM+. The finite element model (FEM) of the composite structure of the lifeboat is modelled by ABAQUS. Quasi-static finite element (FE) analyses are performed for the selected load cases. The structural integrity is assessed by the maximum stress and Tsai-Wu failure measure. In the present study, the load and resistance factors are combined and applied to the response. A sensitivity study is performed to investigate the non-linear load/response effects when the load factor is applied to the load. In addition, dynamic analysis is performed with the time-varying pressure distribution for selected case and the dynamic effect is investigated.



2016 ◽  
Vol 16 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Agata Żółtaszek ◽  
Renata Pisarek

Abstract National airlines operate in a highly competitive environment. EU airlines face a challenge to compete with low cost carriers, as a result of the liberalization process in the sector. European flag airlines of non-EU member states, not benefiting from liberalization, are forced to compete internationally. This research is focused on national carriers, as they provide the majority of service to and from central and regional airports. Therefore, to establish the most efficient entities on the passenger air transport market, DEA (Data Envelopment Analysis) methodology, has been utilized. The purpose of this paper is to evaluate the effectiveness of 29 chosen national airlines in Europe in the year 2013, using the DEA approach, to pinpoint the subset of fully-efficient market leaders, as well as potential sources of inefficiency, among less effective carriers. The analysis incorporates information on inputs (e.g. fleet, number of employees, number of countries and airports served) and outputs (revenue, annual passengers carried, load factor). The results show that more than 40% (12 of 29) researched airlines are effective and the other 34% are near-efficient. Moreover, outcomes suggest that “going big” may not increase effectiveness. It is harder to achieve full efficiency for big carriers than small ones.



Sign in / Sign up

Export Citation Format

Share Document