Analysing Machine Learning Techniques in Python for the Prediction of Diabetes Using the Risk Factors as Parameters

2021 ◽  
pp. 619-639
Author(s):  
M. S. Akanksha ◽  
Kolachana Vinutna ◽  
M. N. Thippeswamy
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 897.2-897
Author(s):  
M. Maurits ◽  
T. Huizinga ◽  
M. Reinders ◽  
S. Raychaudhuri ◽  
E. Karlson ◽  
...  

Background:Heterogeneity in disease populations complicates discovery of risk factors. To identify risk factors for subpopulations of diseases, we need analytical methods that can deal with unidentified disease subgroups.Objectives:Inspired by successful approaches from the Big Data field, we developed a high-throughput approach to identify subpopulations within patients with heterogeneous, complex diseases using the wealth of information available in Electronic Medical Records (EMRs).Methods:We extracted longitudinal healthcare-interaction records coded by 1,853 PheCodes[1] of the 64,819 patients from the Boston’s Partners-Biobank. Through dimensionality reduction using t-SNE[2] we created a 2D embedding of 32,424 of these patients (set A). We then identified distinct clusters post-t-SNE using DBscan[3] and visualized the relative importance of individual PheCodes within them using specialized spectrographs. We replicated this procedure in the remaining 32,395 records (set B).Results:Summary statistics of both sets were comparable (Table 1).Table 1.Summary statistics of the total Partners Biobank dataset and the 2 partitions.Set-Aset-BTotalEntries12,200,31112,177,13124,377,442Patients32,42432,39564,819Patientyears369,546.33368,597.92738,144.2unique ICD codes25,05624,95326,305unique Phecodes1,8511,8531,853We found 284 clusters in set A and 295 in set B, of which 63.4% from set A could be mapped to a cluster in set B with a median (range) correlation of 0.24 (0.03 – 0.58).Clusters represented similar yet distinct clinical phenotypes; e.g. patients diagnosed with “other headache syndrome” were separated into four distinct clusters characterized by migraines, neurofibromatosis, epilepsy or brain cancer, all resulting in patients presenting with headaches (Fig. 1 & 2). Though EMR databases tend to be noisy, our method was also able to differentiate misclassification from true cases; SLE patients with RA codes clustered separately from true RA cases.Figure 1.Two dimensional representation of Set A generated using dimensionality reduction (tSNE) and clustering (DBScan).Figure 2.Phenotype Spectrographs (PheSpecs) of four clusters characterized by “Other headache syndromes”, driven by codes relating to migraine, epilepsy, neurofibromatosis or brain cancer.Conclusion:We have shown that EMR data can be used to identify and visualize latent structure in patient categorizations, using an approach based on dimension reduction and clustering machine learning techniques. Our method can identify misclassified patients as well as separate patients with similar problems into subsets with different associated medical problems. Our approach adds a new and powerful tool to aid in the discovery of novel risk factors in complex, heterogeneous diseases.References:[1] Denny, J.C. et al. Bioinformatics (2010)[2]van der Maaten et al. Journal of Machine Learning Research (2008)[3] Ester, M. et al. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. (1996)Disclosure of Interests:Marc Maurits: None declared, Thomas Huizinga Grant/research support from: Ablynx, Bristol-Myers Squibb, Roche, Sanofi, Consultant of: Ablynx, Bristol-Myers Squibb, Roche, Sanofi, Marcel Reinders: None declared, Soumya Raychaudhuri: None declared, Elizabeth Karlson: None declared, Erik van den Akker: None declared, Rachel Knevel: None declared


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Georgios Kantidakis ◽  
Hein Putter ◽  
Carlo Lancia ◽  
Jacob de Boer ◽  
Andries E. Braat ◽  
...  

Abstract Background Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians. Methods In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques. Results Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years. Conclusion In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables. Trial registration Retrospective data were provided by the Scientific Registry of Transplant Recipients under Data Use Agreement number 9477 for analysis of risk factors after liver transplantation.


2010 ◽  
Vol 2 (4) ◽  
pp. 350-355 ◽  
Author(s):  
Sandhya Joshi ◽  
P. Deepa Shenoy ◽  
Vibhudendra Simha G.G. ◽  
Venugopal K. R ◽  
L.M. Patnaik

2020 ◽  
Vol 17 (8) ◽  
pp. 3449-3452
Author(s):  
M. S. Roobini ◽  
Y. Sai Satwick ◽  
A. Anil Kumar Reddy ◽  
M. Lakshmi ◽  
D. Deepa ◽  
...  

In today’s world diabetes is the major health challenges in India. It is a group of a syndrome that results in too much sugar in the blood. It is a protracted condition that affects the way the body mechanizes the blood sugar. Prevention and prediction of diabetes mellitus is increasingly gaining interest in medical sciences. The aim is how to predict at an early stage of diabetes using different machine learning techniques. In this paper basically, we use well-known classification that are Decision tree, K-Nearest Neighbors, Support Vector Machine, and Random forest. These classification techniques used with Pima Indians diabetes dataset. Therefore, we predict diabetes at different stage and analyze the performance of different classification techniques. We Also proposed a conceptual model for the prediction of diabetes mellitus using different machine learning techniques. In this paper we also compare the accuracy of the different machine learning techniques to finding the diabetes mellitus at early stage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Santu Rana ◽  
Wei Luo ◽  
Truyen Tran ◽  
Svetha Venkatesh ◽  
Paul Talman ◽  
...  

Aim: To use available electronic administrative records to identify data reliability, predict discharge destination, and identify risk factors associated with specific outcomes following hospital admission with stroke, compared to stroke specific clinical factors, using machine learning techniques.Method: The study included 2,531 patients having at least one admission with a confirmed diagnosis of stroke, collected from a regional hospital in Australia within 2009–2013. Using machine learning (penalized regression with Lasso) techniques, patients having their index admission between June 2009 and July 2012 were used to derive predictive models, and patients having their index admission between July 2012 and June 2013 were used for validation. Three different stroke types [intracerebral hemorrhage (ICH), ischemic stroke, transient ischemic attack (TIA)] were considered and five different comparison outcome settings were considered. Our electronic administrative record based predictive model was compared with a predictive model composed of “baseline” clinical features, more specific for stroke, such as age, gender, smoking habits, co-morbidities (high cholesterol, hypertension, atrial fibrillation, and ischemic heart disease), types of imaging done (CT scan, MRI, etc.), and occurrence of in-hospital pneumonia. Risk factors associated with likelihood of negative outcomes were identified.Results: The data was highly reliable at predicting discharge to rehabilitation and all other outcomes vs. death for ICH (AUC 0.85 and 0.825, respectively), all discharge outcomes except home vs. rehabilitation for ischemic stroke, and discharge home vs. others and home vs. rehabilitation for TIA (AUC 0.948 and 0.873, respectively). Electronic health record data appeared to provide improved prediction of outcomes over stroke specific clinical factors from the machine learning models. Common risk factors associated with a negative impact on expected outcomes appeared clinically intuitive, and included older age groups, prior ventilatory support, urinary incontinence, need for imaging, and need for allied health input.Conclusion: Electronic administrative records from this cohort produced reliable outcome prediction and identified clinically appropriate factors negatively impacting most outcome variables following hospital admission with stroke. This presents a means of future identification of modifiable factors associated with patient discharge destination. This may potentially aid in patient selection for certain interventions and aid in better patient and clinician education regarding expected discharge outcomes.


Cervical Cancer is considered the fourth most common female malignancy worldwide and represents a major global health challenge. As a result, in recent years, various proposals and researches have been conducted. This study aims to analyze the data presented in current researches regarding cervical cancer and contribute to future research, all through the framework of literature review, based on 3 research questions: Q1: What are the risk factors that cause cervical cancer? Q2: What preventive measures are currently established for cervical cancer? and, Q3: What are the techniques to detect cervical cancer? Findings show that detection techniques are complementary since they are categorized under machine learning. Therefore, we recommend that further study be promoted in these techniques as they are helpful in the detection process. In addition, risk factors can be considered for a greater scope in detection, such as HPV infection, since it is the most relevant factor for the development of cervical cancer. Finally, we suggest to conduct further research on preventive measures for cervical cancer.


Diabetes is a disease where the predominant finding is high blood sugar. The high blood sugar may either be because of deficient insulin production (Type 1) or insulin resistance in peripheral tissue cells (Type 2). Many problems occur if diabetes remains untreated and unidentified. It is additional inventor of various varieties of disorders for example: coronary failure, blindness, urinary organ diseases etc. Nine different machine learning techniques are used in this research work for prediction of diabetes. A dataset of diabetic patient’s is taken and nine different machine learning techniques are applied on the dataset. Positive likelihood ratio, Negative likelihood ratio, Positive predictive value, Negative predictive value, Disease prevalence, Specificity, Precision, Recall, F1-Score ,True positive rate, False positive rate of the applied algorithms is discussed and compared. Diabetes is growing at an increasing in the world and it requires continuous monitoring. To check this we use Logical regression, Random forest, Logical regression CV, Support Vector Machine, Artificial Neural Network (ANN), Decision Tree, k-nearest neighbors (KNN), XGB classifier.


2021 ◽  
Author(s):  
Alan Lopes de Sousa Freitas ◽  
Ana Silvia Degasperi Ieker ◽  
Josiane Melchiori Pinheiro ◽  
Wilson Rinaldi ◽  
Heloise Manica Paris Teixeira

Cardiometabolic diseases, developed throughout the worker’s life,such as hypertension, diabetes, dyslipidemia and obesity are amongthe main causes of death and are associated with modifiable andcontrollable risk factors. The general objective of this study wasto apply supervised Machine Learning techniques and to comparetheir performance to predict the risk of developing cardiometabolicdisease from servers working at the School Hospital of south inBrazil. We sought to map the characteristics of individuals who aremore likely to develop cardiometabolic diseases. The machine learningmodels evaluated were Naive Bayes, Decision Tree, RandomForest, KNN, Logistic Regression and SVM. The results obtained inthe experiments showed that some supervised machine learningmodels produce a good classification, depending on the attributesand hyperparameters used.


Sign in / Sign up

Export Citation Format

Share Document