Population variation in spawning current speed selection in the blacktail shiner,Cyprinella venusta (Pisces: Cyprinidae)

1994 ◽  
Vol 39 (4) ◽  
pp. 357-364 ◽  
Author(s):  
John A. Baker ◽  
K. Jack Killgore ◽  
Susan A. Foster
2019 ◽  
Author(s):  
Zac Wylde ◽  
Foteini Spagopoulou ◽  
Amy K Hooper ◽  
Alexei A Maklakov ◽  
Russell Bonduriansky

Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal age can affect offspring longevity as strongly as maternal age does, and that breeding age effects can interact over two generations in both matrilines and patrilines. We manipulated maternal and paternal ages at breeding over two generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of parental and grandparental ages at breeding on descendants’ mortality rate and lifespan in both matrilines and patrilines. These breeding age effects were not modulated by grandparental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute substantially to intra-population variation in mortality and longevity.


Author(s):  
Anna C. Rivara ◽  
Margaret Corley ◽  
Courtney C. Choy ◽  
Rachel L. Duckham ◽  
Alysa Pomer ◽  
...  

2020 ◽  
Author(s):  
Hong-Liang Lu ◽  
Yan-Fu Qu ◽  
Hong Li ◽  
Xiang Ji

Abstract Phenotypic plasticity and local adaptation are viewed as the main factors that result in between-population variation in phenotypic traits, but contributions of these factors to phenotypic variation vary between traits and between species and have only been explored in a few species of reptiles. Here, we incubated eggs of the Chinese skink (Plestiodon chinensis) from 7 geographically separated populations in Southeast China at 3 constant temperatures (24, 28, and 32 °C) to evaluate the combined effects of clutch origin, source population, and incubation temperature on hatchling traits. The relative importance of these factors varied between traits. Nearly all examined hatchling traits, including body mass, snout–vent length (SVL), tail length, head size, limb length, tympanum diameter, and locomotor speed, varied among populations and were affected by incubation temperature. Measures for hatchling size (body mass and SVL) varied considerably among clutches. Source population explained much of the variation in hatchling body mass, whereas incubation temperature explained much of the variation in other examined traits. Our results indicate that between-population variation in hatchling traits of P. chinensis likely reflects the difference in natural incubation conditions and genetic divergence.


2021 ◽  
Vol 9 (3) ◽  
pp. 256
Author(s):  
Wei Liu ◽  
Hao Tang ◽  
Xinxing You ◽  
Shuchuang Dong ◽  
Liuxiong Xu ◽  
...  

The codend of a trawl net is the rearmost and crucial part of the net for selective fish catch and juvenile escape. To ensure efficient and sustainable midwater trawl fisheries, it is essential to better understand the drag characteristics and fluttering motions of a midwater trawl codend. These are generally affected by catch, cutting ratio, mesh size, and twine diameter. In this study, six nylon codend models with different cutting ratios (no cutting, 6:1, 5:1, 4:1, 7:2, and 3:1) were designed and tested in a professional flume tank under two conditions (empty codends and codends with catch) and five current speeds to obtain the drag force, spatial geometry, and movement trend. As the cutting ratio of empty codends decreased, the drag force decreased, and the drag coefficient increased. The unfolding degree of codend netting and the height of empty codends were found to be directly proportional to the current speed and inversely proportional to the cutting ratio. The positional amplitude of codend with cutting ratio 4:1 was the smallest for catch. The drag force of codends with catch increased as the current speed increased, and first decreased and then increased as the cutting ratio decreased. To ensure the best stability and minimum drag force of the codend, it is recommended to use the 4:1 cutting ratio codend.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aysun Urhan ◽  
Thomas Abeel

AbstractCoronavirus disease 2019 (COVID-19) has emerged in December 2019 when the first case was reported in Wuhan, China and turned into a pandemic with 27 million (September 9th) cases. Currently, there are over 95,000 complete genome sequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, in public databases, accompanying a growing number of studies. Nevertheless, there is still much to learn about the viral population variation when the virus is evolving as it continues to spread. We have analyzed SARS-CoV-2 genomes to identify the most variant sites, as well as the stable, conserved ones in samples collected in the Netherlands until June 2020. We identified the most frequent mutations in different geographies. We also performed a phylogenetic study focused on the Netherlands to detect novel variants emerging in the late stages of the pandemic and forming local clusters. We investigated the S and N proteins on SARS-CoV-2 genomes in the Netherlands and found the most variant and stable sites to guide development of diagnostics assays and vaccines. We observed that while the SARS-CoV-2 genome has accumulated mutations, diverging from reference sequence, the variation landscape is dominated by four mutations globally, suggesting the current reference does not represent the virus samples circulating currently. In addition, we detected novel variants of SARS-CoV-2 almost unique to the Netherlands that form localized clusters and region-specific sub-populations indicating community spread. We explored SARS-CoV-2 variants in the Netherlands until June 2020 within a global context; our results provide insight into the viral population diversity for localized efforts in tracking the transmission of COVID-19, as well as sequenced-based approaches in diagnostics and therapeutics. We emphasize that little diversity is observed globally in recent samples despite the increased number of mutations relative to the established reference sequence. We suggest sequence-based analyses should opt for a consensus representation to adequately cover the genomic variation observed to speed up diagnostics and vaccine design.


2016 ◽  
Vol 26 (7) ◽  
pp. 2086-2102 ◽  
Author(s):  
Simone Vincenzi ◽  
Marc Mangel ◽  
Dusˇan Jesensˇek ◽  
John C. Garza ◽  
Alain J. Crivelli

Author(s):  
Md Shakir Mahmud ◽  
Nischal Gupta ◽  
Babak Safaei ◽  
Hisham Jashami ◽  
Timothy J. Gates ◽  
...  

Understanding speed selection behavior of drivers following speed limit increases is critically important. To date, the literature has largely focused on freeways and the effects of speed limit changes on two-lane highways remains under researched. Prior research has generally focused on changes to mean speeds, although the speeds of both the highest and lowest drivers are also of great interest. This study investigates trends in free-flow travel speeds following 2017 legislation that increased the posted speed limit from 55 to 65 mph on 943 mi of rural highways in Michigan. Speed data were collected for over 46,000 drivers at 67 increase segments where speed limit increased and 28 control segments where speed limits remained unchanged, before and during each of the two successive years following the speed limit increases. Site-specific traffic, geometric, and cross-sectional information was also collected. Impacts of the speed limit increases on the 15th, 50th, and 85th percentile speeds were evaluated using quantile regression. Separate analyses were conducted for passenger cars and heavy vehicles. Locations where the speed limits were raised experienced increases in travel speeds ranging from 2.8 to 4.8 mph. The control sites experienced marginal changes in speeds, which suggests that any spillover effects of the higher speed limits have been limited. Significant differences were observed across the quantiles with respect to the effects of the speed limit increases, as well as numerous site-specific variables of interest. The results provide important insights about the nature of driver speed selection and the impacts of speed limit increases.


Sign in / Sign up

Export Citation Format

Share Document