Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak

1991 ◽  
Vol 55 (3) ◽  
pp. 255-281 ◽  
Author(s):  
Shu -Hsien Chou ◽  
Michael P. Ferguson
2016 ◽  
Vol 29 (6) ◽  
pp. 1999-2014 ◽  
Author(s):  
Jennifer Fletcher ◽  
Shannon Mason ◽  
Christian Jakob

Abstract A comparison of marine cold air outbreaks (MCAOs) in the Northern and Southern Hemispheres is presented, with attention to their seasonality, frequency of occurrence, and strength as measured by a cold air outbreak index. When considered on a gridpoint-by-gridpoint basis, MCAOs are more severe and more frequent in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in winter. However, when MCAOs are viewed as individual events regardless of horizontal extent, they occur more frequently in the SH. This is fundamentally because NH MCAOs are larger and stronger than those in the SH. MCAOs occur throughout the year, but in warm seasons and in the SH they are smaller and weaker than in cold seasons and in the NH. In both hemispheres, strong MCAOs occupy the cold air sector of midlatitude cyclones, which generally appear to be in their growth phase. Weak MCAOs in the SH occur under generally zonal flow with a slight northward component associated with weak zonal pressure gradients, while weak NH MCAOs occur under such a wide range of conditions that no characteristic synoptic pattern emerges from compositing. Strong boundary layer deepening, warming, and moistening occur as a result of the surface heat fluxes within MCAOs.


2009 ◽  
Vol 66 (5) ◽  
pp. 1274-1293 ◽  
Author(s):  
Eric D. Skyllingstad ◽  
James B. Edson

Abstract Cold air outflow over the Gulf Stream is modeled using a cloud-resolving large-eddy simulation model with three classes of precipitation. Simulations are conducted in a quasi-Lagrangian framework using an idealized sounding and uniform geostrophic winds based on observations taken on 20 February 2007 as part of the World Climate Research Program Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE) project. Two cases are considered, one with an increasing sea surface temperature (SST) representing the crossing of the Gulf Stream front, and a second case with constant SST. Cloud systems develop in the model with strong convective plumes that spread into regions of stratus clouds at the top of the boundary layer. Simulated boundary layer growth is forced by a combination of evaporative cooling at the cloud top, upward radiative flux, and mechanical entrainment of the overlying warmer and drier air. Constant growth of the boundary layer acts to maintain a near-constant water vapor level in the boundary layer, promoting high latent and sensible heat fluxes. Frictional surface drag is distributed throughout the boundary layer by convection, causing increased shear at the cloud top, qualitatively agreeing with observed sounding profiles. Overall, the frontal case develops stronger precipitation and turbulence in comparison with the constant SST case. A near-uniform stratocumulus layer and stronger radiative cooling are produced in the constant SST case, whereas the frontal case generates open cumuliform clouds with reduced cloud coverage. Cloud evolution in the frontal case is similar to the transition from stratocumulus to shallow cumulus observed in the subtropics, as cumuliform clouds enhance cloud-top entrainment and evaporation of stratus clouds.


2015 ◽  
Vol 144 (1) ◽  
pp. 315-336 ◽  
Author(s):  
Lukas Papritz ◽  
Stephan Pfahl

Abstract In this study the dynamical mechanisms shaping the evolution of a marine cold air outbreak (CAO) that occurred over the Ross, Amundsen, and Bellingshausen Seas in June 2010 are investigated in an isentropic framework. The drainage of cold air from West Antarctica into the interior Ross Sea, its subsequent export, and the formation of a dome of cold air off the sea ice edge are shown to be intimately linked to a lower-tropospheric cyclone, as well as the cyclonic breaking of an upper-level potential vorticity trough. The dome formation is accompanied by an extreme deepening of the boundary layer, whose top reaches to the height of the low-lying tropopause within the trough, potentially allowing for deep stratosphere–troposphere exchange. A crucial finding of this study is that the decay of the CAO is essentially driven by the circulation associated with a train of mesocyclones and the release of latent heat in their warm sectors. Sensitivity experiments with switched off fluxes of sensible and latent heat reveal that the erosion of the CAO air mass depends critically on the moistening by latent heat fluxes, whereby the synergistic effects of sensible heat fluxes and moist processes amplify the erosion. Within the CAO air mass, the erosion is inhibited by cloud-top radiative cooling and the dissolution of clouds by the entrainment of dryer air. These findings potentially have implications for the representation of CAOs in coarse-resolution climate models.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
T. G. Jensen ◽  
T. Campbell ◽  
T. A. Smith ◽  
R. J. Small ◽  
R. Allard

1993 ◽  
Vol 18 ◽  
pp. 142-148 ◽  
Author(s):  
Masayuki Maki ◽  
Sento Nakai ◽  
Tsuruhei Yagi ◽  
Hideomi Nakamura

The mechanisms of strong winds associated with snow clouds, and the relationship between strong winds and blowing/drifting snow, were investigated. A snowstorm occurred with a typical L-mode snow band which was generated and organized longitudinally during a continental cold-air outbreak over the Sea of Japan. Doppler radar observations revealed that the snow band consisted of small echo cells arranged along the direction of the snow band. When one of the echo cells passed, blowing/drifting snow was generated and intensified by a snow cloud-induced gust, and the horizontal visibility near the ground surface was significantly decreased. Doppler radar and radiosonde data showed that the gust was due to the cold air outflow (CAO) from the snow clouds. The leading edge of the CAO was about 9 km ahead of the center of the snow cloud and the depth of the CAO was about 600 m near the forward flank of the snow cloud. The CAO was caused by a downdraft at the center of the snow cloud, which was initiated at a height of about 1.3 km and with a velocity in excess of 1 ms−1. The observed CAO speed was explained by the theory of the gravity current.


Sign in / Sign up

Export Citation Format

Share Document