Effects of the pyrimido-pyrimidine derivative RX-RA 85 on metastatic tumor cell-vascular endothelial cell interactions

1987 ◽  
Vol 5 (3) ◽  
pp. 219-231 ◽  
Author(s):  
Rosemarie B. Lichtner ◽  
Garth L. Nicolson
1982 ◽  
Vol 30 (3) ◽  
pp. 214-220 ◽  
Author(s):  
G L Nicolson

Two of the more important steps in blood-borne tumor metastasis are attachment of the circulating malignant cells to the vascular endothelium and subsequent extravasation or invasion out of the blood vessel. A model for this process has been developed using cultured monolayers of vascular endothelial cells that synthesize a basal lamina or extracellular matrix (Kramer and Nicolson, Proc Natl Acad Sci USA 76:504, 1979). We have used this model to study metastatic tumor cell-endothelial cell interactions such as attachment to endothelial cells and their subsequent retraction and exposure of endothelial basal lamina as well as the interactions of metastatic tumor cells with the basal lamina leading to invasion and solubilization of this extracellular matrix. Morphological, immunological, and enzymological analysis of these steps in the metastatic process can be obtained using the vascular endothelial cell monolayer model for attachment and invasion.


2010 ◽  
Vol 8 (10) ◽  
pp. 1297-1309 ◽  
Author(s):  
Mélanie Héroult ◽  
Florence Schaffner ◽  
Dennis Pfaff ◽  
Claudia Prahst ◽  
Robert Kirmse ◽  
...  

Blood ◽  
1987 ◽  
Vol 69 (5) ◽  
pp. 1450-1457 ◽  
Author(s):  
JE Jr Edwards ◽  
D Rotrosen ◽  
JW Fontaine ◽  
CC Haudenschild ◽  
RD Diamond

Abstract Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida- endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51Cr release from radiolabeled monolayers. From these studies, we conclude that neutrophils are capable of killing Candida hyphae selectively within human vascular endothelial cell monolayers and may have protective rather than detrimental effects on endothelial cell integrity.


1993 ◽  
Vol 6 (1) ◽  
pp. 50 ◽  
Author(s):  
Norihisa Matsuyoshi ◽  
Ken-ichi Toda ◽  
Yuji Horiguchi ◽  
Toshihiro Tanaka ◽  
Sadao Imamura

Sign in / Sign up

Export Citation Format

Share Document