Ultrastructural studies of complement mediated cell death: a biological reaction model to plasma membrane injury

1994 ◽  
Vol 424 (6) ◽  
Author(s):  
J.C. Papadimitriou ◽  
C.B. Drachenberg ◽  
M.L. Shin ◽  
B.F. Trump
2019 ◽  
Vol 40 (3-4) ◽  
pp. 319-333 ◽  
Author(s):  
Ashraf Kitmitto ◽  
Florence Baudoin ◽  
Elizabeth J. Cartwright

Abstract The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell’s first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key ‘wound-healing’ proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.


Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


2015 ◽  
Vol 290 (34) ◽  
pp. 20841-20855 ◽  
Author(s):  
Mercè Garcia-Belinchón ◽  
María Sánchez-Osuna ◽  
Laura Martínez-Escardó ◽  
Carla Granados-Colomina ◽  
Sònia Pascual-Guiral ◽  
...  

Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.


2015 ◽  
Vol 211 (6) ◽  
pp. 1193-1205 ◽  
Author(s):  
Heather Miller ◽  
Thiago Castro-Gomes ◽  
Matthias Corrotte ◽  
Christina Tam ◽  
Timothy K. Maugel ◽  
...  

Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca2+-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca2+-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR–lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte–mediated immune responses.


The Analyst ◽  
2017 ◽  
Vol 142 (18) ◽  
pp. 3451-3458 ◽  
Author(s):  
Yuki Imaizumi ◽  
Tatsuro Goda ◽  
Akira Matsumoto ◽  
Yuji Miyahara

Membrane injury and apoptosis of mammalian cells by chemical stimuli were distinguished using ammonia-perfused continuous pH-sensing systems.


1996 ◽  
Vol 270 (4) ◽  
pp. H1334-H1341 ◽  
Author(s):  
T. L. Vanden Hoek ◽  
Z. Shao ◽  
C. Li ◽  
R. Zak ◽  
P. T. Schumacker ◽  
...  

The extent of cardiac injury incurred during reperfusion as opposed to that occurring during ischemia is unclear. This study tested the hypothesis that simulated ischemia followed by simulated reperfusion causes significant "reperfusion injury" in isolated chick cardiomyocytes. Cells were exposed to hypoxia, hypercarbic acidosis, hyperkalemia, and substrate deprivation for 1 h followed by 3 h of reperfusion. Irreversible cell membrane injury, measured by propidium iodide uptake, increased from 4% of cells at the end of ischemia to 73% after reperfusion; death occurred in only 17% of cells kept ischemic for 4 h. Lactate dehydrogenase release was consistent with these changes. Lengthening ischemia from 30 to 90 min increased cell injury as expected, but of the total cell death, > 90% occurred during reperfusion. "Chemical hypoxia" composed of cyanide (2.5 mM) plus 2-deoxyglucose augmented injury before reperfusion compared with simulated ischemia. Inhibition of oxygen radical generation by use of metal chelator 1,10-phenanthroline reduced cell death from 73% to 40% after reperfusion (P = 0.001). We conclude that simulated reperfusion significantly augments the cellular membrane damage elicited by simulated ischemia in isolated cardiomyocytes devoid of other factors and suggest that reactive oxygen species, perhaps from the mitochondria, participate in this injury.


2021 ◽  
Vol 14 (9) ◽  
pp. 864
Author(s):  
Takuro Kobori ◽  
Chihiro Tanaka ◽  
Mayuka Tameishi ◽  
Yoko Urashima ◽  
Takuya Ito ◽  
...  

Programmed cell death ligand-1 (PD-L1), an immune checkpoint protein highly expressed on the cell surface in various cancer cell types, binds to programmed cell death-1 (PD-1), leading to T-cell dysfunction and tumor survival. Despite clinical successes of PD-1/PD-L1 blockade therapies, patients with colorectal cancer (CRC) receive little benefit because most cases respond poorly. Because high PD-L1 expression is associated with immune evasion and poor prognosis in CRC patients, identifying potential modulators for the plasma membrane localization of PD-L1 may represent a novel therapeutic strategy for enhancing the efficacy of PD-1/PD-L1 blockade therapies. Here, we investigated whether PD-L1 expression in human colorectal adenocarcinoma cells (LS180) is affected by ezrin/radixin/moesin (ERM), functioning as scaffold proteins that crosslink plasma membrane proteins with the actin cytoskeleton. We observed colocalization of PD-L1 with all three ERM proteins in the plasma membrane and detected interactions involving PD-L1, the three ERM proteins, and the actin cytoskeleton. Furthermore, gene silencing of ezrin and radixin, but not of moesin, substantially decreased the expression of PD-L1 on the cell surface without affecting its mRNA level. Thus, in LS180 cells, ezrin and radixin may function as scaffold proteins mediating the plasma membrane localization of PD-L1, possibly by post-translational modification.


Sign in / Sign up

Export Citation Format

Share Document