Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart*

1984 ◽  
Vol 16 (7) ◽  
pp. 605-621 ◽  
Author(s):  
C STEENBERGEN ◽  
R JENNINGS
Author(s):  
F. Bouvet ◽  
M. Ros ◽  
E. Bonedeau ◽  
C. Croissant ◽  
L. Frelin ◽  
...  

AbstractCancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may be a therapeutic avenue for inhibiting metastasis. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to major defect of the membrane repair machinery responsible for the death of migrating MDA-MB-231 cells. Inhibition of membrane repair machinery may therefore represent a promising avenue for annihilating cancer metastasis.SummaryCancer cells are able to reach distant tissues by migration and invasion processes. This study shows that inhibition of the plasma membrane repair machinery may represent a promising avenue for annihilating cancer metastasis.


2000 ◽  
Vol 89 (6) ◽  
pp. 2490-2496 ◽  
Author(s):  
Nicholas E. Vlahakis ◽  
Rolf D. Hubmayr

In this review, we examine the hypothesis that plasma membrane stress failure is a central event in the pathophysiology of injury from alveolar overdistension. This hypothesis leads us to consider alveolar micromechanics and specifically the mechanical interactions between lung matrix and alveolar epithelial cell cytoskeleton and plasma membrane. We then explore events that are central to the regulation of plasma membrane tension and detail the lipid-trafficking responses of in vitro deformed and/or injured cells. We conclude with a reference to upregulation of stress-responsive genes after membrane injury and resealing.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


2021 ◽  
Vol 22 (13) ◽  
pp. 7232
Author(s):  
Gloria Lazzeri ◽  
Carla L. Busceti ◽  
Francesca Biagioni ◽  
Cinzia Fabrizi ◽  
Gabriele Morucci ◽  
...  

Norepinephrine (NE) neurons and extracellular NE exert some protective effects against a variety of insults, including methamphetamine (Meth)-induced cell damage. The intimate mechanism of protection remains difficult to be analyzed in vivo. In fact, this may occur directly on target neurons or as the indirect consequence of NE-induced alterations in the activity of trans-synaptic loops. Therefore, to elude neuronal networks, which may contribute to these effects in vivo, the present study investigates whether NE still protects when directly applied to Meth-treated PC12 cells. Meth was selected based on its detrimental effects along various specific brain areas. The study shows that NE directly protects in vitro against Meth-induced cell damage. The present study indicates that such an effect fully depends on the activation of plasma membrane β2-adrenergic receptors (ARs). Evidence indicates that β2-ARs activation restores autophagy, which is impaired by Meth administration. This occurs via restoration of the autophagy flux and, as assessed by ultrastructural morphometry, by preventing the dissipation of microtubule-associated protein 1 light chain 3 (LC3) from autophagy vacuoles to the cytosol, which is produced instead during Meth toxicity. These findings may have an impact in a variety of degenerative conditions characterized by NE deficiency along with autophagy impairment.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1127 ◽  
Author(s):  
Beatriz Chamorro ◽  
David García-Vieira ◽  
Daniel Diez-Iriepa ◽  
Estíbaliz Garagarza ◽  
Mourad Chioua ◽  
...  

Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document