Lipid peroxidation and activities of antioxygenic enzymes in vitro in mercuric chloride treated human erythrocytes

Author(s):  
Human Erythrocytes ◽  
A.K. Bansal ◽  
D. Bhatnagar ◽  
R. Bhardwaj
2019 ◽  
Vol 13 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Margarita Velásquez ◽  
Darío Méndez ◽  
Carlos Moneriz

Background: Pyridoxine has reduction and prevention against the levels of reactive oxygen species in in vitro studies. However, the biochemical mechanism that explains this behavior has not yet been fully clarified. Objective: To evaluate the effect of pyridoxine against oxidative damage on the membrane of human erythrocytes. Methods: Cumene hydroperoxide was used to induce oxidative stress in protein and lipid. Human erythrocytes were incubated with pyridoxine and cumene hydroperoxide, either alone or together for 8 h. Oxidative damage was determined by measuring lipid peroxidation and membrane protein carbonylation. Results: The results indicate that the malondialdehyde concentration decreased with increasing concentration of pyridoxine. The membrane protein content also decreased with increasing concentration of vitamin B6, which was confirmed by the decreased signal intensity in the western blot when compared to control without pyridoxine. Results demonstrate that pyridoxine can significantly decrease lipid peroxidation and protein carbonylation in red cell membrane exposed to high concentrations of oxidant agent. Conclusion: Pyridoxine showed a protective effect against the oxidative stress in human erythrocytes in vitro, inhibiting the carbonylation and the oxidative damage of erythrocyte membrane proteins. To date, such an effect has not yet been reported in terms of protein oxidation.


2009 ◽  
Vol 25 (8) ◽  
pp. 545-550 ◽  
Author(s):  
Ismail Karabulut ◽  
Z. Dicle Balkanci ◽  
Bilge Pehlivanoglu ◽  
Aysen Erdem ◽  
Ersin Fadillioglu

Toluene, an organic solvent used widely in the industry, is highly lipophilic and accumulates in the cell membrane impeding transport through it. Its metabolites cause oxygen radical formation that react with unsaturated fatty acids and proteins in erythrocytes leading to lipid peroxidation and protein breakdown. In this study, we aimed to investigate the membrane stabilizing and the oxidative stress—inducing effects of toluene in human erythrocytes. Measurements of osmotic fragility, mean corpuscular volume (MCV), oxidative stress parameters and antioxidant enzyme activities were performed simultaneously both in individuals exposed to toluene professionally (in vivo) and human erythrocytes treated with toluene (in vitro). To measure osmotic fragility, erythrocytes were placed in NaCl solutions at various concentrations (0.1% [blank], 0.38%, 0.40%, 0.42%, 0.44%, 0.46%, 0.48% and 1% [stock]). Percentage of haemolysis in each solution was calculated with respect to the 100% haemolysis in the blank solution. The erythrocyte packs prepared at the day of the above-mentioned measurements were kept at —80°C until the time for determination of malonyldialdehyde and protein carbonyl levels, and catalase (CAT) and glutathione peroxidase activities as indicators of oxidative stress. Toluene increased oxidative stress parameters significantly both in vivo and in vitro; it also caused a significant decrease in the activities of antioxidant enzymes. Osmotic fragility was altered only in the case of in vitro exposure. In conclusion, toluene exposure resulted in increased lipid peroxidation and protein damage both in vivo and in vitro. Although, it is natural to expect increased osmotic fragility due to oxidative properties of toluene, its membrane-stabilizing effect overcame the oxidative properties leading to decreased osmotic fragility or preventing its deterioration in vitro and in vivo toluene exposures, respectively, in the present study.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 689
Author(s):  
Alessia Remigante ◽  
Rossana Morabito ◽  
Sara Spinelli ◽  
Vincenzo Trichilo ◽  
Saverio Loddo ◽  
...  

d-Galactose (d-Gal), when abnormally accumulated in the plasma, results in oxidative stress production, and may alter the homeostasis of erythrocytes, which are particularly exposed to oxidants driven by the blood stream. In the present investigation, the effect of d-Gal (0.1 and 10 mM, for 3 and 24 h incubation), known to induce oxidative stress, has been assayed on human erythrocytes by determining the rate constant of SO42− uptake through the anion exchanger Band 3 protein (B3p), essential to erythrocytes homeostasis. Moreover, lipid peroxidation, membrane sulfhydryl groups oxidation, glycated hemoglobin (% A1c), methemoglobin levels (% MetHb), and expression levels of B3p have been verified. Our results show that d-Gal reduces anion exchange capability of B3p, involving neither lipid peroxidation, nor oxidation of sulfhydryl membrane groups, nor MetHb formation, nor altered expression levels of B3p. d-Gal-induced %A1c, known to crosslink with B3p, could be responsible for rate of anion exchange alteration. The present findings confirm that erythrocytes are a suitable model to study the impact of high sugar concentrations on cell homeostasis; show the first in vitro effect of d-Gal on B3p, contributing to the understanding of mechanisms underlying an in vitro model of aging; demonstrate that the first impact of d-Gal on B3p is mediated by early Hb glycation, rather than by oxidative stress, which may be involved on a later stage, possibly adding more knowledge about the consequences of d-Gal accumulation.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Bożena Sosnowska ◽  
Bogumiła Huras ◽  
Hanna Nowacka-Krukowska ◽  
Bożena Bukowska

AbstractChlorfenvinphos (CFVF) is an organophosphorus insecticide, which was used to control insect pest on livestock and household pests such as flies, fleas, and mites. The molecular basis of toxic properties of CFVF in animals has been insufficiently studied. Blood can transport oxygen and nutrients as well as toxic compounds. Xenobiotics can enter to red blood cells and cause damage. Therefore, investigation of the toxicity of different compounds to erythrocytes is very important. The purpose of the present experiment was to evaluate the effect of this compound on human erythrocytes. We have evaluated the hemolysis, hemoglobin oxidation (met-Hb formation) and lipid peroxidation in human erythrocytes. Moreover, the changes in the level of reactive oxygen species (ROS) were assessed using flow cytometry as well as those in morphological changes of erythrocytes using phase contrast microscopy. This study describes the interaction of low concentrations of CFVF with human erythrocytes as well as the concentrations, which may enter human organism as a result of acute poisoning (0.5–250 μM). It was shown that CFVF only at high concentration induced changes in human erythrocytes. We have observed hemolysis (at 250 μM), changes in morphological parameters including echinocytes formation (at 250 μM), as well as increase in lipid peroxidation in erythrocytes (at 250 μM), ROS formation (at 100 μM) in red blood cells treated 1 hour with CFVF. Additionally, CFVF after 4 h of incubation oxidized hemoglobin, however, to a lower degree.


1991 ◽  
Vol 149 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Pichika Rajeswari ◽  
Rama Natarajan ◽  
Jerry L. Nadler ◽  
Dinesh Kumar ◽  
Vijay K. Kalra

Sign in / Sign up

Export Citation Format

Share Document