Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation

1995 ◽  
Vol 14 (5) ◽  
pp. 305-309 ◽  
Author(s):  
Ariel Arencibia ◽  
Pedro R. Molina ◽  
Gustavo de la Riva ◽  
Guillermo Selman-Housein
2000 ◽  
Vol 27 (11) ◽  
pp. 1021 ◽  
Author(s):  
Hongmei Ma ◽  
Henrik H. Albert ◽  
Robert Paull ◽  
Paul H. Moore

Transgenic sugarcane (Saccharum officinarum L.) lines were created to express altered invertase isoform activity to elucidate the role(s) of invertase in the sucrose accumulation process. A sugarcane soluble acid invertase cDNA (SCINVm, AF062734) in the antisense orientation was used to decrease invertase activity. The Saccharomyces cerevisiae invertase gene (SUC2), fused with appropriate targeting elements, was used to increase invertase activity in the apoplast, cytoplasm and vacuole. A callus/liquid culture system was established to evaluate change in invertase activity and sugar concentration in the transgenic lines. Increased invertase activity in the apoplast led to rapid hydrolysis of sucrose and rapid increase of hexose in the medium. The cellular hexose content increased dramatically and the sucrose level decreased. Cells with higher cytoplasmic invertase activity did not show a significant change in the sugar composition in the medium, but did significantly reduce the sucrose content in the cells. Transformation with the sugarcane antisense acid invertase gene produced a cell line with moderate inhibition of soluble acid invertase activity and a 2-fold increase in sucrose accumulation. Overall, intracellular and extracellular sugar composition was very sensitive to the change in invertase activities. Lowering acid invertase activity increased sucrose accumulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahida Qamar ◽  
Idrees Ahmad Nasir ◽  
Mounir G. Abouhaidar ◽  
Kathleen L. Hefferon ◽  
Abdul Qayyum Rao ◽  
...  

AbstractSugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70–76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer’s field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.


2007 ◽  
Vol 12 (2) ◽  
pp. 137-143
Author(s):  
Miswar Miswar ◽  
Bambang Sugiharto ◽  
Joedoro Soedarsono ◽  
Sukarti Moeljapawiro

Sucrose phosphate synthase (SPS EC 2.3.1.14) plays an important role in partition of assimilated carbon in most plants. SPS catalyses the penultimate reaction in the pathway of sucrose synthesis, in which sucrose-6-phosphate (Suc6P) is synthesized from UDPglucose (UDPG) and fructose-6-P (Fru6P). To increase the capacity of sugarcane in sucrose synthesis, spindle leaves of sugarcane cv R579 were transformed with cDNA SoSPS1 from sugarcane under the control of constitutive promoter (35S CaMV) that constructed in pBI 121 (pKYS) using Agrobacterium tumefaciens. Based on PCR analysis, we have detected the existence of SPS transgene in some lines of transformed sugarcane, called line 4, 5, 6, and 7. The SPS transgene in transformed sugarcane could be expressed into translation level and increased the amount of leaves SPS protein, so the activity of leaves SPS was higher than wild type sugarcane as control. The transformed sugarcane line 4, 5, 6, and 7 showed 1.4–2.9 fold increases in SPS activity and 1,76–2,2 fold increases in leaves sucrose content. Increasing in SPS activity in transgenic sugarcane was coupled by the increase in invertase activity and ratio between sucrose and starch content.


2010 ◽  
Vol 37 (12) ◽  
pp. 1161 ◽  
Author(s):  
Luguang Wu ◽  
Robert G. Birch

Transgenic sugarcane (Saccharum officinarum L. interspecific hybrids) line N3.2 engineered to express a vacuole-targeted sucrose isomerase was found to accumulate sucrose to twice the level of the background genotype Q117 in heterotrophic cell cultures, without adverse effects on cell growth. Isomaltulose levels declined over successive subcultures, but the enhanced sucrose accumulation was stable. Detailed physiological characterisation revealed multiple processes altered in line N3.2 in a direction consistent with enhanced sucrose accumulation. Striking differences from the Q117 control included reduced extracellular invertase activity, slower extracellular sucrose depletion, lower activities of symplastic sucrose-cleavage enzymes (particularly sucrose synthase breakage activity), and enhanced levels of symplastic hexose-6-phosphate and trehalose-6-phosphate (T6P) in advance of enhanced sucrose accumulation. Sucrose biosynthesis by sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP) was substantially faster in assays conducted to reflect the elevation in key allosteric metabolite glucose-6-phosphate (G6P). Sucrose-non-fermenting-1-related protein kinase 1 (SnRK1, which typically activates sucrose synthase breakage activity while downregulating SPS in plants) was significantly lower in line N3.2 during the period of fastest sucrose accumulation. For the first time, T6P is also shown to be a negative regulator of SnRK1 activity from sugarcane sink cells, hinting at a control circuitry for parallel activation of key enzymes for enhanced sucrose accumulation in sugarcane.


2010 ◽  
Vol 37 (1) ◽  
pp. 22 ◽  
Author(s):  
Debra Rossouw ◽  
Jens Kossmann ◽  
Frederik C. Botha ◽  
Jan-Hendrik Groenewald

Transgenic sugarcane plants (Saccharum officinarum L. interspecific hybrids) were regenerated from previously described cell lines with reduced neutral invertase (NI) activity. The effects that were observed in the differentiated culm tissues at different stages of maturity paralleled those observed across the growth cycle of the suspension cultures. Reduced NI activity correlated with an increase in sucrose and a decrease in hexose levels. However, the magnitude of the reduction in enzyme activity and the accompanying changes in carbohydrate metabolism were not as pronounced as in the suspension cultures. Feeding experiments with radio-labelled fructose provided evidence that the cycling of sucrose as well as the total respiration rate correlated directly with NI activity. Sucrose synthase activity was upregulated in the transgenic plants, possibly to compensate for the reduction in invertase activity. Despite this partial compensation, the respiratory rates of the transgenic lines were still significantly lower than those of the untransformed control lines. This study clearly demonstrates the importance of NI in directing carbon towards respiratory processes in the sugarcane culm. In addition, this is the first report in which data obtained from genetically modified sugarcane suspension cell cultures and their regenerated, whole-plant counterparts are compared. The observed correlations support the use of cell cultures as a model system for sugarcane internodes, which could significantly accelerate reverse genetic studies on sugarcane carbohydrate metabolism in the future.


2020 ◽  
Vol 88 (2) ◽  
Author(s):  
Hayati MINARSIH ◽  
Jembar PAMBUDI ◽  
Riza Arief PUTRANTO

Sugarcane plantations in Indonesia have been expanded and shifted to the marginal land characterized by long drought period, therefore, an attempt has been initiated to generate drought tolerance varieties through genetic engineering. It could be conducted by inserting the gene that involve in plant adaptation response to drought stress such as dehydrin (DHN) into sugarcane genome. The promoter of sugarcane DHN gene was isolated and transformed into sugarcane in the previous research. This study aimed to demonstrate the functionality of sugarcane DHN promoter through expression analysis of DHN regulatory genes that play a role in response to drought stress. Expression analyses using RT-qPCR were also conducted on regulatory genes of sugarcane that inserted by Pr-1DHNSo construct treated with drought stress. The results showed that the expressions of  SoMYB, SoWRKY, SoNAC, and SoDHN genes were escalated on sugarcane 16 days after stress treatment ranging from 353 to 4067 folds relatively to untreated samples in which SoNAC gene showed the highest expression. On the other hand, the analysis on transgenic sugarcane carrying DHNpromoter construct showed SoNAC and SoDREB expression increased after 72 hours under drought stress. The expression values of SoNAC in transgenic and non-transgenic plants under drought condition were 4.79 and 4.99, respectively. Meanwhile, the expression values of SoDREB in transgenic and non-transgenic plants under drought condition were 13.2 and 13.3, respectively. The results of these experiments showed that the promoter construct of Pr-1DHNSo was induced by drought stress treatments highlighting the regulation of several upstream genes of SoDHN.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
T Lira ◽  
JH Yariwake ◽  
YH Choi ◽  
HK Kim ◽  
R Verpoorte
Keyword(s):  

2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Daru Mulyono

The objectives of the research were to make land suitability map for sugarcane plant (Saccharum officinarum), to give recommendation of location including area for sugarcane plant cultivation and to increase sugarcane plant productivity. The research used maps overlay and Geographical Information System (GIS) which used Arch-View Spatial Analysis version 2,0 A in Remote Sensing Laboratory, Agency for the Assessment and Application of Technology (BPPT), Jakarta. The research was carried out in Tegal Regency starting from June to October 2004.The results of the research showed that the suitable, conditionally suitable, and not suitable land for sugarcane cultivation in Tegal Regency reached to a high of 20,227 ha, 144 ha, and 81,599 ha respectively. There were six most dominant kind of soil: alluvial (32,735 ha), grumosol 5,760 ha), mediteran (17,067 ha), latosol   (18,595 ha), glei humus (596 ha), and regosol (22,721 ha).


Sign in / Sign up

Export Citation Format

Share Document