scholarly journals Analisis ko-ekspresi gen-gen regulasi upstream dari gen Dehydrin di tanaman tebu (Saccharum officinarum L.) pada kondisi cekaman kekeringan

2020 ◽  
Vol 88 (2) ◽  
Author(s):  
Hayati MINARSIH ◽  
Jembar PAMBUDI ◽  
Riza Arief PUTRANTO

Sugarcane plantations in Indonesia have been expanded and shifted to the marginal land characterized by long drought period, therefore, an attempt has been initiated to generate drought tolerance varieties through genetic engineering. It could be conducted by inserting the gene that involve in plant adaptation response to drought stress such as dehydrin (DHN) into sugarcane genome. The promoter of sugarcane DHN gene was isolated and transformed into sugarcane in the previous research. This study aimed to demonstrate the functionality of sugarcane DHN promoter through expression analysis of DHN regulatory genes that play a role in response to drought stress. Expression analyses using RT-qPCR were also conducted on regulatory genes of sugarcane that inserted by Pr-1DHNSo construct treated with drought stress. The results showed that the expressions of  SoMYB, SoWRKY, SoNAC, and SoDHN genes were escalated on sugarcane 16 days after stress treatment ranging from 353 to 4067 folds relatively to untreated samples in which SoNAC gene showed the highest expression. On the other hand, the analysis on transgenic sugarcane carrying DHNpromoter construct showed SoNAC and SoDREB expression increased after 72 hours under drought stress. The expression values of SoNAC in transgenic and non-transgenic plants under drought condition were 4.79 and 4.99, respectively. Meanwhile, the expression values of SoDREB in transgenic and non-transgenic plants under drought condition were 13.2 and 13.3, respectively. The results of these experiments showed that the promoter construct of Pr-1DHNSo was induced by drought stress treatments highlighting the regulation of several upstream genes of SoDHN.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahida Qamar ◽  
Idrees Ahmad Nasir ◽  
Mounir G. Abouhaidar ◽  
Kathleen L. Hefferon ◽  
Abdul Qayyum Rao ◽  
...  

AbstractSugarcane (Saccharum officinarum L.) is a cash crop grown commercially for its higher amounts of sucrose, stored within the mature internodes of the stem. Numerous studies have been done for the resistance development against biotic and abiotic stresses to save the sucrose yields. Quality and yield of sugarcane production is always threatened by the damages of cane borers and weeds. In current study two problems were better addressed through the genetic modification of sugarcane for provision of resistance against insects and weedicide via the expression of two modified cane borer resistant CEMB-Cry1Ac (1.8 kb), CEMB-Cry2A (1.9 kb) and one glyphosate tolerant CEMB-GTGene (1.4 kb) genes, driven by maize Ubiquitin Promoter and nos terminator. Insect Bio-toxicity assays were carried out for the assessment of Cry proteins through mortality percent of shoot borer Chilo infuscatellus at 2nd instar larvae stage. During V0, V1 and V2 generations young leaves from the transgenic sugarcane plants were collected at plant age of 20, 40, 60, 80 days and fed to the Chilo infuscatellus larvae. Up to 100% mortality of Chilo infuscatellus from 80 days old transgenic plants of V2 generation indicated that these transgenic plants were highly resistant against shoot borer and the gene expression level is sufficient to provide complete resistance against target pests. Glyphosate spray assay was carried out for complete removal of weeds. In V1-generation, 70–76% transgenic sugarcane plants were found tolerant against glyphosate spray (3000 mL/ha) under field conditions. While in V2-generation, the replicates of five selected lines 4L/2, 5L/5, 6L/5, L8/4, and L9/6 were found 100% tolerant against 3000 mL/ha glyphosate spray. It is evident from current study that CEMB-GTGene, CEMB-Cry1Ac and CEMB-Cry2A genes expression in sugarcane variety CPF-246 showed an efficient resistance against cane borers (Chilo infuscatellus) and was also highly tolerant against glyphosate spray. The selected transgenic sugarcane lines showed sustainable resistance against cane borer and glyphosate spray can be further exploited at farmer’s field level after fulfilling the biosafety requirements to boost the sugarcane production in the country.


2021 ◽  
Vol 13 (14) ◽  
pp. 2730
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


1995 ◽  
Vol 14 (5) ◽  
pp. 305-309 ◽  
Author(s):  
Ariel Arencibia ◽  
Pedro R. Molina ◽  
Gustavo de la Riva ◽  
Guillermo Selman-Housein

2014 ◽  
Vol 94 (6) ◽  
pp. 1009-1012 ◽  
Author(s):  
David R. Guevara ◽  
Yong-Mei Bi ◽  
Steven J. Rothstein

Guevara, D. R., Bi, Y.-M. and Rothstein, S. J. 2014. Identification of regulatory genes to improve nitrogen use efficiency. Can. J. Plant Sci. 94: 1009–1012. Crop production on soils containing sub-optimal levels of nitrogen (N) severely compromises yield potential. The development of crop varieties displaying high N use efficiency (NUE) is necessary in order to optimize N fertilizer use, and reduce the environmental damage caused by the current excessive application of N in agricultural areas. Genome-wide microarray analysis of rice plants grown under N-limiting environments was performed to identify NUE candidate genes. An early nodulin gene, OsENOD93-1, was strongly up-regulated during plant growth under low N. A constitutive Ubiquitin promoter was used to drive the expression of the OsENOD93-1 gene in transgenic plants to determine the importance of OsENOD93-1 for rice NUE. Transgenic rice plants over-expressing the OsENOD93-1 gene achieved ∼23% and 16% more yield and biomass, respectively, compared with wild-type plants when grown under N-limitation conditions. OsENOD93-1-OX transgenic plants accumulated a higher amount of total amino acids in the roots and xylem sap under N stress, suggesting that OsENOD93-1 plays a role in the transportation of amino acids. Taken together, we demonstrate that an effective way to identify NUE gene candidates involves both transcriptional profiling coupled with a transgenic validation approach to improve complex traits such as NUE in important crops.


2022 ◽  
Vol 23 (2) ◽  
pp. 686
Author(s):  
Sifan Sun ◽  
Xu Li ◽  
Shaopei Gao ◽  
Nan Nie ◽  
Huan Zhang ◽  
...  

WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 μM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.


2020 ◽  
Vol 7 (01) ◽  
pp. 28-36
Author(s):  
Hayati Minarsih Iskandar ◽  
Sonny Suhandono ◽  
Jembar Pambudi ◽  
Tati Kristianti ◽  
Riza Arief Putranto ◽  
...  

Dehydrin (DHN) is known to play an important role in plant response and adaptation to abiotic stresses (drought, high salinity, cold, heat, etc.). Previous research reported the increased expression of DHN in sugarcane stems exposed to drought stress for 15 days which may be controlled by its corresponding stress inducible promoter. The DHN promoter was succesfully isolated from sugarcane variety PSJT 941 (Pr-1DHNSo) and was cloned to pBI121 expression vector fused to a β-glucuronidase (GUS) reporter gene.  The aim of this research was the functional testing of the Pr-1DHNSo promoter through transformation into tobacco plant treated with in vitro drought stress. Genetic transformation of Pr-1DHNSo construct was conducted by Agrobacterium tumefaciens. The transformed tobacco was then subjected to drought stress treatment using 40% PEG 6000  for five sequential incubations (0, 12, 24, 48 and 72 hours). The GUS assay reveal that the transformed tobacco treated with drought stress showed a blue color denoting GUS activity in leaf, stem and root tissues and this expression increased along with the length of the drought treatment. The analysis of gusA gene using real time-qPCR normalized to the L25 reference gene also showed that the expression increased in line with the length of time of drought stress.  The results presented in this study indicated that the Pr-1DHNSo promoter from sugarcane was expressed and induced by drought stress treatment in tobacco.


2021 ◽  
Author(s):  
Qingyin Zhang ◽  
Xiaoxu Jia ◽  
Mingan Shao

Abstract BackgroundShifts in rainfall patterns that are associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. However, causes of forest decline and their physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. To explore the response of hydraulic architecture and non-structural carbohydrates (NSC) traits under seasonal drought, we conducted a manipulation experiment in a Robinia pseudoacacia plantation in 2015 and 2016 in Loess Plateau of China. Sap-flow, leaf area index, water potential, non-structural carbohydrate concentrations, and hydraulics in different organs were measured. ResultsThe mean pre-dawn and midday leaf water potential after two growing seasons of drought stress was significantly lower (-2.2 MPa and -2.7 MPa, respectively) than those of control trees (-1.5 MPa and -2.0 MPa, respectively). Drought stress accelerated the loss of conductivity, and promoted the formation of narrow hydraulic safety margins, which indicated that hydraulic failure could be a good predictor of “physiological drought” in trees when subjected to two growing seasons of drought. Both sugar and starch concentrations in stems and roots were similar in all trees throughout the drought period, which indicated that trees maintained good coordination between carbon supply and demand when confronted with two growing seasons of drought.ConclusionsOur results emphasized that hydraulic failure plays the predominant role in causing tree death during highly intense drought, while whether "carbon starvation" occurs during tree mortality remains to be tested in longer (multi-year) but less intense drought.


2021 ◽  
Author(s):  
Jun-E Guo

Abstract Histone deacetylation, one of vital modifying factors of post-translation modifications, which is catalyzed by histone deacetylase. The genes of histone deacetylase(HDACs) play critical roles in various stress responses. However, detailed functions for most SlHDAC members in tomato still unknown. In this work, we found that a histone deacetylase, SlHDA3, involved in response to NaCl and drought abiotic stresses. The expression of SlHDA3 was also induced significantly by NaCl, drought stress and endogenous hormone treatments. Silencing of SlHDA3 in tomato, the RNAi transgenic plants presented depressed tolerance to drought and salt stresses compared with WT tomato. The results of sensitivity analysis indicated that the length of hypocotyl and roots in RNAi plants were more inhibited by ABA and salt stress than that of WT at post-germination stage. Worse growth status were exhibited in SlHDA3 transgenic plants under salt and drought stress as are evaluated by a series of physiological parameters related to stress responses, such as decreased RWC, survival rate, ABA content, chlorophyll content and CAT activity, and increased MDA content and proline content. Besides, the expressions analysis of transgenic plants showed that the transcripts of genes which associated with responses to abiotic stress were down-regulated under salt-stressed conditions. To sum up, SlHDA3 acts as a stress-responsive gene, plays a role in the positive regulation of abiotic stress tolerance, and may be one of the new members in the engineering breeding of salt- and drought-tolerant tomato.


Author(s):  
Anie Thomas ◽  
R. Beena

Drought stress reduces photosynthetic rate and leading to depletion of the energy source and lowers the yield. Under drought stress, reduced turgor pressure cause inhibition of cell elongation and impaired mitosis leads to reduction in growth rate. Role of sucrose metabolism under drought adaptation and response of plants to stress in different tissues and at different developmental stages. Cytoplasmic sucrose synthesis is more under drought condition and there is differential expression in tolerant and susceptible cultivars. Under drought condition, plant start consuming its own sink for its survival thus reducing sucrose concentration. But reduction in sucrose concentration is less in drought tolerant plants. Drought stress induced an increase of the root/shoot ratio, which was due to the increased inhibition of biomass accumulation of shoots compared to roots. Drought stress enhanced the activities of sucrose metabolic enzymes and up-regulated the expression of genes such as SPS, SuSy and INV. In addition, drought stress up-regulated the expression levels of SWEET and SUC and promoted the transport of sucrose from source to sink.


Sign in / Sign up

Export Citation Format

Share Document