Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fishes (Photoblepharon palpebratus and Kryptophanaron alfredi): population sizes and growth within the light organs, and rates of release into the seawater

1984 ◽  
Vol 78 (3) ◽  
pp. 249-254 ◽  
Author(s):  
M. G. Haygood ◽  
B. M. Tebo ◽  
K. H. Nealson
Author(s):  
Peter J. Herring ◽  
Malcolm R. Clarke ◽  
S. Von Boletzky ◽  
K. P. Ryan

Symbiotic luminous bacteria have been described in, and cultured from, a number of species offish and cephalopod. Indeed only in these two groups are extracellular luminous bacteria believed to be utilized as a source of light (see Buchner (1965) and Herring (1978) for references). Despite several earlier investigations of such symbioses in cephalopods the bacteria in these animals have not been adequately identified, nor has the extent of their role been clarified. The ultrastructural relationships between bacteria and the tissues of the squid accessory nidamental gland have been investigated in the non-luminous species Loligo pealei (Lesueur) (Bloodgood, 1977) and Sepia officinalis L. (Van den Branden et al. 1979) but no comparative work on luminous species has been undertaken apart from that on Heteroteuthis dispar (Rüppell), whose photophore does not contain typical luminous bacteria (Dilly & Herring, 1978; cf. Leisman, Cohn & Nealson, 1980). The order Sepioidea contains five families, among which are the two families Sepiolidae and Spirulidae. Though the presence of luminous bacteria is known in some sepiolids (as well as in certain loliginids (order Teuthoidea)) some doubt remains about the source of light in the photophore of Spirula spirula Hoyle. The steady luminescence of this species has prompted speculation that bacteria may be involved (Harvey, 1952). In this paper we compare the anatomy and ultrastructure of the photophores of both Sepiola and Spirula in order to clarify some of these problems.


1998 ◽  
Vol 180 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Pat M. Fidopiastis ◽  
Sigurd von Boletzky ◽  
Edward G. Ruby

ABSTRACT Two genera of sepiolid squids—Euprymna, found primarily in shallow, coastal waters of Hawaii and the Western Pacific, and Sepiola, the deeper-, colder-water-dwelling Mediterranean and Atlantic squids—are known to recruit luminous bacteria into light organ symbioses. The light organ symbiont ofEuprymna spp. is Vibrio fischeri, but until now, the light organ symbionts of Sepiola spp. have remained inadequately identified. We used a combination of molecular and physiological characteristics to reveal that the light organs ofSepiola affinis and Sepiola robusta contain a mixed population of Vibrio logei and V. fischeri, with V. logei comprising between 63 and 100% of the bacteria in the light organs that we analyzed. V. logei had not previously been known to exist in such symbioses. In addition, this is the first report of two different species of luminous bacteria co-occurring within a single light organ. The luminescence of these symbiotic V. logei strains, as well as that of other isolates of V. logei tested, is reduced when they are grown at temperatures above 20°C, partly due to a limitation in the synthesis of aliphatic aldehyde, a substrate of the luminescence reaction. In contrast, the luminescence of the V. fischeri symbionts is optimal above 24°C and is not enhanced by aldehyde addition. Also, V. fischeri strains were markedly more successful than V. logei at colonizing the light organs of juvenile Euprymna scolopes, especially at 26°C. These findings have important implications for our understanding of the ecological dynamics and evolution of cooperative, and perhaps pathogenic, associations of Vibrio spp. with their animal hosts.


2008 ◽  
Vol 74 (24) ◽  
pp. 7471-7481 ◽  
Author(s):  
Paul V. Dunlap ◽  
Kimberly M. Davis ◽  
Shinichi Tomiyama ◽  
Misato Fujino ◽  
Atsushi Fukui

ABSTRACT Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore apparently precedes acquisition of the symbiotic bacteria. Furthermore, bacterial populations in larval light organs near inception of the symbiosis are genetically diverse, like those of adult fish.


2000 ◽  
Vol 66 (8) ◽  
pp. 3550-3555 ◽  
Author(s):  
Michele K. Nishiguchi

ABSTRACT The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. AllSepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeriand Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, andS. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and inSepiola juveniles when they were incubated at 26°C. In contrast, strains of V. logei grew faster at 18°C in culture and in Sepiola juveniles. When aposymbioticS. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26°C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26°C, whereas strains of V. logei were present in greater concentrations at 18°C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.


2020 ◽  
Vol 655 ◽  
pp. 123-137
Author(s):  
TM Grimes ◽  
MT Tinker ◽  
BB Hughes ◽  
KE Boyer ◽  
L Needles ◽  
...  

Protective legislation and management have led to an increase in California’s sea otter Enhydra lutris nereis population. While sea otter recovery has been linked to ecosystem benefits, sea otter predation may negatively affect commercially valuable species. Understanding the potential influence of sea otters is of particular importance as their range expands into estuaries that function as nurseries for commercially valuable species like Dungeness crab Metacarcinus magister. We consider how sea otter predation has affected the abundance and size of juvenile Dungeness crab in Elkhorn Slough, California, USA, and analyzed cancrid crab abundance and size across 4 California estuaries with and without sea otters to understand how biotic and abiotic factors contribute to observed variation in crab size and abundance. We compared trends in southern sea otters relative to Dungeness crab landings in California to assess whether increasing sea otter abundance have negatively impacted landings. In Elkhorn Slough, juvenile Dungeness crab abundance and size have declined since 2012, coinciding with sea otter population growth. However, the impact of sea otters on juvenile Dungeness crab size was habitat-specific and only significant in unvegetated habitat. Across estuaries, we found that cancrid crab abundance and size were negatively associated with sea otter presence. While abiotic factors varied among estuaries, these factors explained little of the observed variation in crab abundance or size. Although we found evidence that sea otters can have localized effects on cancrid crab populations within estuaries, we found no evidence that southern sea otters, at recent population sizes, have negatively impacted Dungeness crab landings in California from 2000-2014.


Author(s):  
Karol Torzewski

The paper presents the results of field research on the occurrence of Succisella inflexa in Kampinos National Park, conducted in 2004–2015. Its stations are characterized and its distribution is given. The populations were mainly concentrated in the eastern part of the park. Forty-five stations have been reported, two of them most likely historical. They were most often in open sedge and meadow, and less frequently in thin shrub and young forests. The population sizes ranged from single specimens to many thousands.


Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.


Author(s):  
Lina Díaz-Castro ◽  
Héctor Cabello-Rangel ◽  
Kurt Hoffman

Background. The doubling time is the best indicator of the course of the current COVID-19 pandemic. The aim of the present investigation was to determine the impact of policies and several sociodemographic factors on the COVID-19 doubling time in Mexico. Methods. A retrospective longitudinal study was carried out across March–August, 2020. Policies issued by each of the 32 Mexican states during each week of this period were classified according to the University of Oxford Coronavirus Government Response Tracker (OxCGRT), and the doubling time of COVID-19 cases was calculated. Additionally, variables such as population size and density, poverty and mobility were included. A panel data model was applied to measure the effect of these variables on doubling time. Results. States with larger population sizes issued a larger number of policies. Delay in the issuance of policies was associated with accelerated propagation. The policy index (coefficient 0.60, p < 0.01) and the income per capita (coefficient 3.36, p < 0.01) had a positive effect on doubling time; by contrast, the population density (coefficient −0.012, p < 0.05), the mobility in parks (coefficient −1.10, p < 0.01) and the residential mobility (coefficient −4.14, p < 0.01) had a negative effect. Conclusions. Health policies had an effect on slowing the pandemic’s propagation, but population density and mobility played a fundamental role. Therefore, it is necessary to implement policies that consider these variables.


Sign in / Sign up

Export Citation Format

Share Document