In vivo and in vitro measurements of P32-uptake in the ocular tissue in cases of malignant melanoma

1981 ◽  
Vol 217 (1) ◽  
pp. 35-44 ◽  
Author(s):  
J. Wollensak ◽  
M. Heinrich
Nanoscale ◽  
2018 ◽  
Vol 10 (23) ◽  
pp. 11013-11020 ◽  
Author(s):  
E. González-Lavado ◽  
N. Iturrioz-Rodríguez ◽  
E. Padín-González ◽  
J. González ◽  
L. García-Hevia ◽  
...  

Mild oxidation treatments improve the in vitro and in vivo macrophage biodegradation of carbon nanotubes that trigger remarkable anti-tumoral effects in malignant melanoma solid tumors produced in mice.


2020 ◽  
Vol 11 (2) ◽  
Author(s):  
M.-T. Sheu ◽  
C.-W. Lin ◽  
M.-C. Huang ◽  
C.-H. Shen ◽  
H.-O. Ho

1999 ◽  
Vol 45 (9) ◽  
pp. 1587-1595 ◽  
Author(s):  
Hugh A MacKenzie ◽  
Helen S Ashton ◽  
Stephen Spiers ◽  
Yaochun Shen ◽  
Scott S Freeborn ◽  
...  

Abstract We report here on in vitro and in vivo experiments that are intended to explore the feasibility of photoacoustic spectroscopy as a tool for the noninvasive measurement of blood glucose. The in vivo results from oral glucose tests on eight subjects showed good correlation with clinical measurements but indicated that physiological factors and person-to-person variability are important. In vitro measurements showed that the sensitivity of the glucose measurement is unaffected by the presence of common blood analytes but that there can be substantial shifts in baseline values. The results indicate the need for spectroscopic data to develop algorithms for the detection of glucose in the presence of other analytes.


2020 ◽  
pp. 089686082097312
Author(s):  
Alicia Sobrino-Pérez ◽  
Alfonso Pérez-Escudero ◽  
Lucila Fernández-Arroyo ◽  
Ana Dorado-García ◽  
Berta Martín-Alcón ◽  
...  

Intraperitoneal pressure (IPP) is gaining consideration as a relevant parameter of peritoneal dialysis (PD) in adults, although many of its aspects are still pending clarification. We address here its stability over time and the validity of the usual method of clinical measurement, as proposed by Durand in 1992 but never specifically validated. We performed this validation by comparing Durand’s method and direct measurements with a central venous pressure system. We performed a total of 250 measurement pairs in 50 patients with different intraperitoneal volumes plus in-vitro measurements with a simulated peritoneum. Absolute differences between the two systems in vivo were 0.87 ± 0.91 cmH2O (range 0–5 cmH2O); only 6.4% of them were ≥3 cmH2O. In vitro results for both methods were identical. We also compared IPP measurements in the same patient separated by 1–4 h (514 measurement pairs in 136 patients), 1 week (92 pairs in 92 patients), and 2 years (34 pairs in 17 patients). Net differences of measurements separated by hours or 1 week were close to 0 cmH2O, with oscillations of 1.5 cmH2O in hours and 2.3 cmH2O in 1 week. IPP measured 2 years apart presented a net decrease of 2.5 ± 4.9 cmH2O, without correlation with body mass index changes or any other usual parameter of PD. In hours, 7% of IPP differences were >3 cmH2O, 22% in 1 week, and 50% in 2 years. In conclusion, Durand’s method is precise enough to measure IPP in peritoneal dialysis. This parameter is not stable over long timescales, so it is necessary to use recent measurements.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wei Sun ◽  
Fang Zhao ◽  
Yu Xu ◽  
Kai Huang ◽  
Xianling Guo ◽  
...  

Abstract Chondroitin polymerizing factor (CHPF) is an important member of glycosyltransferases involved in the biosynthesis of chondroitin sulfate (CS). However, the relationship between CHPF and malignant melanoma (MM) is still unknown. In this study, it was demonstrated that CHPF was up-regulated in MM tissues compared with the adjacent normal skin tissues and its high expression was correlated with more advanced T stage. Further investigations indicated that the over-expression/knockdown of CHPF could promote/inhibit proliferation, colony formation and migration of MM cells, while inhibiting/promoting cell apoptosis. Moreover, knockdown of CHPF could also suppress tumorigenicity of MM cells in vivo. RNA-sequencing followed by Ingenuity pathway analysis (IPA) was performed for exploring downstream of CHPF and identified CDK1 as the potential target. Furthermore, our study revealed that knockdown of CDK1 could inhibit development of MM in vitro, and alleviate the CHPF over-expression induced promotion of MM. In conclusion, our study showed, as the first time, CHPF as a tumor promotor for MM, whose function was carried out probably through the regulation of CDK1.


1996 ◽  
Vol 135 (6) ◽  
pp. 1889-1898 ◽  
Author(s):  
D Schadendorf ◽  
M A Kern ◽  
M Artuc ◽  
H L Pahl ◽  
T Rosenbach ◽  
...  

Human malignant melanoma is notoriously resistant to pharmacological modulation. We describe here for the first time that the synthetic retinoid CD437 has a strong dose-dependent antiproliferative effect on human melanoma cells (IC50: 5 x 10(-6) M) via the induction of programmed cell death, as judged by analysis of cell morphology, electron microscopical features, and DNA fragmentation. Programmed cell death was preceded by a strong activation of the AP-1 complex in CD437-treated cells as demonstrated by gel retardation and chloramphenicol transferase (CAT) assays. Northern blot analysis showed a time-dependent increase in the expression of c-fos and c-jun encoding components of AP-1, whereas bcl-2 and p53 mRNA levels remained constant. CD437 also exhibited a strong growth inhibitory effect on MeWo melanoma cells in a xenograft model. In tissue sections of CD437-treated MeWo tumors from these animals, apoptotic melanoma cells and c-fos overexpressing cells were colocalized by TdT-mediated deoxyuridine triphosphate-digoxigenin nick end labeling (TUNEL) staining and in situ hybridization. Taken together, this report identifies CD437 as a retinoid that activates and upregulates the transcription factor AP-1, leading eventually to programmed cell death of exposed human melanoma cells in vitro and in vivo. Further studies are needed to evaluate whether synthetic retinoids such as CD437 represent a new class of retinoids, which may open up new ways to a more effective therapy of malignant melanoma.


Sign in / Sign up

Export Citation Format

Share Document