scholarly journals Advances in Photoacoustic Noninvasive Glucose Testing

1999 ◽  
Vol 45 (9) ◽  
pp. 1587-1595 ◽  
Author(s):  
Hugh A MacKenzie ◽  
Helen S Ashton ◽  
Stephen Spiers ◽  
Yaochun Shen ◽  
Scott S Freeborn ◽  
...  

Abstract We report here on in vitro and in vivo experiments that are intended to explore the feasibility of photoacoustic spectroscopy as a tool for the noninvasive measurement of blood glucose. The in vivo results from oral glucose tests on eight subjects showed good correlation with clinical measurements but indicated that physiological factors and person-to-person variability are important. In vitro measurements showed that the sensitivity of the glucose measurement is unaffected by the presence of common blood analytes but that there can be substantial shifts in baseline values. The results indicate the need for spectroscopic data to develop algorithms for the detection of glucose in the presence of other analytes.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2260 ◽  
Author(s):  
Jirawat Riyaphan ◽  
Chien-Hung Jhong ◽  
Shian-Ren Lin ◽  
Chia-Hsiang Chang ◽  
May-Jwan Tsai ◽  
...  

The inhibition of α-glucosidase and α-amylase is a clinical strategy for the treatment of type II diabetes, and herbal medicines have been reported to credibly alleviate hyperglycemia. Our previous study has reported some constituents from plant or herbal sources targeted to α-glucosidase and α-amylase via molecular docking and enzymatic measurement, but the hypoglycemic potencies in cell system and mice have not been validated yet. This study was aimed to elucidate the hypoglycemic efficacy of docking selected compounds in cell assay and oral glucose and starch tolerance tests of mice. All test compounds showed the inhibition of α-glucosidase activity in Caco-2 cells. The decrease of blood sugar levels of test compounds in 30 min and 60 min of mice after OGTT and OSTT, respectively and the decreased glucose levels of test compounds were significantly varied in acarbose. Taken altogether, in vitro and in vivo experiments suggest that selected natural compounds (curcumin, antroquinonol, HCD, docosanol, tetracosanol, rutin, and actinodaphnine) via molecular docking were confirmed as potential candidates of α-glucosidase and α-amylase inhibitors for treating diabetes.


1993 ◽  
Vol 75 (6) ◽  
pp. 2825-2830 ◽  
Author(s):  
J. De Boer ◽  
H. Plijter-Groendijk ◽  
J. Korf

A heated (42 degrees C) microdialysis probe and its application for continuous transcutaneous sampling of ethanol and glucose through cellophane-stripped forearm skin are described. Ethanol and glucose concentration in the dialysate were measured on-line with continuous-flow analysis and compared with blood values in human volunteers after ethanol consumption (n = 4) and oral glucose testing (n = 5), respectively. For ethanol and glucose, the dialysate and blood concentrations were linearly related in each subject (r > or = 0.91, P < 0.005), although the dialysate-to-blood ratio varied among subjects. The recovery in vivo was 22.4 +/- 22.7 and 4.7 +/- 2.3% (SD) of the recovery in vitro for ethanol and glucose, respectively. The dialysate glucose concentration was independent of blood flow. When the probe temperature was increased from 32 to 42 degrees C, the dialysate-to-blood glucose ratio increased, with 2.4 +/- 1.4%/degrees C (SD) in fasting subjects (n = 4), which was similar to an increase of 2.1 +/- 0.045%/degree C in dialysate-to-medium ratio in vitro. The present approach for transcutaneous sampling may possibly be used for other substances of low molecular weight as well.


2010 ◽  
Vol 299 (1) ◽  
pp. R19-R32 ◽  
Author(s):  
Sergio Polakof ◽  
Rosa Álvarez ◽  
José L. Soengas

The main objective of the present study was to evaluate the relative contribution of the intestine to glucose homeostasis in rainbow trout. In a first set of in vivo experiments trout were subjected to oral glucose treatments alone or in combination with insulin injections to assess changes in glucose-related enzymes activities, metabolite levels, and mRNA levels. Rainbow trout gut displays an important glucose metabolism that includes the ability to store glucose as glycogen (mostly in the muscle layers) and a large capacity to oxidize glucose. This constitutes a surprising result for a carnivorous fish. In a second set of in vivo experiments, trout received an oral amino acid solution alone or in combination with insulin injection to determine whether other factors besides fasting could regulate gluconeogenesis in intestine. The results confirm the absence of regulation of gluconeogenesis in trout gut, which does not respond to hormones, glucose, lactate, or amino acid changes, either in vivo or in vitro. We also fully characterized gut glucose metabolism in vitro. We observed that a large amount of glucose is oxidized to lactate, supporting the importance of glucose in gut metabolism. Moreover, we corroborated the minor actions of insulin in trout gut, whereas other hormones such as glucagon-like peptide-1 and C-peptide appear to be major hormonal regulators of glucose metabolism in fish gut. Finally, we obtained the first evidence for the existence of a glucosensing mechanism in the midgut of this carnivorous species.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 11 (10) ◽  
pp. 4451
Author(s):  
Coralia Cotoraci ◽  
Alina Ciceu ◽  
Alciona Sasu ◽  
Eftimie Miutescu ◽  
Anca Hermenean

Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.


Sign in / Sign up

Export Citation Format

Share Document