Electromagnetic field in two-dimensional locally flat space-time

1994 ◽  
Vol 33 (6) ◽  
pp. 1257-1263
Author(s):  
Kingshuk Majumdar ◽  
Rajkumar Roychoudhury
2005 ◽  
Vol 20 (07) ◽  
pp. 1481-1493
Author(s):  
J. KLUSOŇ

In this paper we propose the toy model of the closed string tachyon effective action that has marginal tachyon profile as its exact solution in case of constant or linear dilaton background. Then we will apply this model for description of two-dimensional bosonic string theory. We will find that the background configuration with the spatial dependent linear dilaton, flat space–time metric and marginal tachyon profile is the exact solution of our model even if we take into account backreaction of tachyon on dilaton and on metric.


1992 ◽  
Vol 07 (15) ◽  
pp. 3567-3591 ◽  
Author(s):  
JÜRGEN TOLKSDORF

We show that the vacuum [Formula: see text] theory has no nontrivial solution admitting the same symmetry as the massless pointlike particle in flat space–time. This is interpreted as a special kind of "gravitational anomaly." The "conformal" part of the theory, however, is anomaly-free and admits an entire class of these vacuum solutions. If we use an electromagnetic field as the source of these solutions it has to be unpolarized.


Author(s):  
José Wadih Maluf ◽  
Sérgio Costa Ulhoa

We present the Lagrangian and Hamiltonian formulations of a theory for spin 2 fields. The construction is developed in flat space-time. The construction in curved space-time is conceptually straightforward, although it is not unique. The theory is based on a symmetric tensor $S_{\mu\nu}$, contains two degrees of freedom of radiation, is motivated by the teleparallel formulation of general relativity, and displays a certain resemblance with Maxwell's theory for the electromagnetic field.


By splitting the curvature tensor R hijk into three 3-tensors of the second rank in a normal co-ordinate system, self-conjugate empty gravitational fields are defined in a manner analogous to that of the electromagnetic field. This formalism leads to three different types of self-conjugate gravitational fields, herein termed as types A, B and C . The condition that the gravitational field be self-conjugate of type A is expressed in a tensor form. It is shown that in such a field R hijk is propagated with the fundamental velocity and all the fourteen scalar invariants of the second order vanish. The structure of R hijk defines a null vector which can be identified as the vector defining the propagation of gravitational waves. It is found that a necessary condition for an empty gravitational field to be continued with a flat space-time across a null 3-space is that the field be self-conjugate of type A. The concept of the self-conjugate gravitational field is extended to the case when R ij # 0 but the scalar curvature R is zero. The condition in this case is also expressed in a tensor form. The necessary conditions that the space-time of an electromagnetic field be continued with an empty gravitational field or a flat space-time across a 3-space have been obtained. It is shown that for a null electromagnetic field whose gravitational field is self-conjugate of type A , all the fourteen scalar invariants of the second order vanish.


2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2013 ◽  
Vol 34 (1) ◽  
pp. 390-434 ◽  
Author(s):  
S. Falletta ◽  
G. Monegato ◽  
L. Scuderi

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Haiwen Li ◽  
Nae Zheng ◽  
Xiyu Song ◽  
Yinghua Tian

The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA) and direction of arrival (DOA) parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC) algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM) system, and the Cramer-Rao bound (CRB) is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT) algorithm and 2D matrix pencil (MP) algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.


Sign in / Sign up

Export Citation Format

Share Document