Effect of low temperature on the initiation and growth of fatigue cracks in 08kp steel with different grain size

1989 ◽  
Vol 24 (4) ◽  
pp. 385-392 ◽  
Author(s):  
O. P. Ostash ◽  
E. M. Kostyk ◽  
I. N. Levina
2021 ◽  
pp. 174751982098472
Author(s):  
Lalmi Khier ◽  
Lakel Abdelghani ◽  
Belahssen Okba ◽  
Djamel Maouche ◽  
Lakel Said

Kaolin M1 and M2 studied by X-ray diffraction focus on the mullite phase, which is the main phase present in both products. The Williamson–Hall and Warren–Averbach methods for determining the crystallite size and microstrains of integral breadth β are calculated by the FullProf program. The integral breadth ( β) is a mixture resulting from the microstrains and size effect, so this should be taken into account during the calculation. The Williamson–Hall chart determines whether the sample is affected by grain size or microstrain. It appears very clearly that the principal phase of the various sintered kaolins, mullite, is free from internal microstrains. It is the case of the mixtures fritted at low temperature (1200 °C) during 1 h and also the case of the mixtures of the type chamotte cooks with 1350 °C during very long times (several weeks). This result is very significant as it gives an element of explanation to a very significant quality of mullite: its mechanical resistance during uses at high temperature remains.


2007 ◽  
Vol 24-25 ◽  
pp. 229-232
Author(s):  
S.L. Ma ◽  
Wei Li ◽  
Cong Rong Zhu ◽  
J. Zhang ◽  
H.C. Ye

Tungsten carbide which is a hard and brittle material was ground by cast-iron bonded diamond wheel with ELID (Electrolytic In-Process Dressing) technique, for the purpose of getting high efficiency, super-precision machining. Three kinds of cast-iron bonded diamond wheels with different grain size were adopted to get different grinding efficiency and surface quality of workpieces. The grinding properties of cast-iron bonded grinding wheels with different grain size and the ground surface quality of tungsten carbide are discussed in this paper. The experiment results indicate that, under the same feeding amount, the grinding efficiency of the wheel with bigger grain size is higher, and it could make the dimension accuracy of the workpiece controllable, but the wheel with smaller grain size could get better ground surface quality. The two grinding phases are decided by the ratio between the size of abrasive grain and the thickness of the oxide layer on the grinding wheel.


2004 ◽  
Vol 447-448 ◽  
pp. 435-440 ◽  
Author(s):  
M. Noda ◽  
Kunio Funami ◽  
M. Hirohashi ◽  
M. Kobayashi
Keyword(s):  

1999 ◽  
Vol 74 (25) ◽  
pp. 3884-3886 ◽  
Author(s):  
A. de Andrés ◽  
M. Garcı́a-Hernández ◽  
J. L. Martı́nez ◽  
C. Prieto
Keyword(s):  

2018 ◽  
Vol 162 ◽  
pp. 01026
Author(s):  
Mahmood Rashid Mahmood

Plain strain model tests were performed on beds of sands with different particle size distribution (Coarse, Medium and Fine) prepared at loose state (Relative density Dr. of 30%). A strip footing model with skirt was placed on the bed of sand and loaded vertically up to failure at different ratios of skirt depth to width D/B of (0.5, 1.0, 1.5, 2, and 3). The applied stress increments and the corresponding settlements were measured. The improvement ratio due to different skirt depth and the behavior of bearing capacity parameters Nγ and Nq at each depth were evaluated and compared with some theoretical approaches. The test results revealed that the improvement ratio increased linearly up to D/B of 1.5 then reduced. Two factors were introduce into the general bearing capacity equation where used to evaluate bearing capacity of skirt footing, there values are about 1.6 for skirt ratio ranged between 0.5 to 1.5, and 1.25 for skirt ratio more than 1.5. Also, it is found that the Nγ parameter for D/B=0 were very close to Vesic proposal for fine and medium grain size distribution, while it’s close to Biarez proposal for coarse sand. The behavior of Nq parameter with different skirt ratio shows slight increase up to D/B of 1.5 then decrease with increasing D/B ratio for different grain size distribution. While the behavior of theoretical Nq parameter (depending on angle of internal friction values) shows a linear increase with skirt ratio for different grain size distribution.


2010 ◽  
Vol 25 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Sea-Hoon Lee ◽  
Byung-Nam Kim ◽  
Hidehiko Tanaka

Al8B4C7 was used as a sintering additive for the densification of nano-SiC powder. The average grain size was approximately 70 nm after sintering SiC-12.5wt% Al8B4C7 at 1550 °C. The densification rate strongly depended on the sintering temperature and the applied pressure. The rearrangement of SiC particles occurred at the initial shrinkage, while viscous flow and liquid phase sintering became important at the middle and final stage of densification.


Sign in / Sign up

Export Citation Format

Share Document