Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man

1991 ◽  
Vol 63 (1) ◽  
pp. 17-23 ◽  
Author(s):  
H. J. Green ◽  
G. Coates ◽  
J. R. Sutton ◽  
S. Jones
Author(s):  
Anatolii V. Kotsuruba ◽  
Yulia P. Korkach ◽  
Sergey O. Talanov ◽  
Olga V. Bazilyuk ◽  
Lyubov G. Stepanenko ◽  
...  

2009 ◽  
Vol 297 (2) ◽  
pp. H576-H582 ◽  
Author(s):  
Qibin Jiao ◽  
Yunzhe Bai ◽  
Toru Akaike ◽  
Hiroshi Takeshima ◽  
Yoshihiro Ishikawa ◽  
...  

Sarcalumenin (SAR), a Ca2+-binding protein located in the longitudinal sarcoplasmic reticulum (SR), regulates Ca2+ reuptake into the SR by interacting with cardiac sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a). We have previously demonstrated that SAR deficiency induced progressive heart failure in response to pressure overload, despite mild cardiac dysfunction in sham-operated SAR knockout (SARKO) mice ( 26 ). Since responses to physiological stresses often differ from those to pathological stresses, we examined the effects of endurance exercise on cardiac function in SARKO mice. Wild-type (WT) and SARKO mice were subjected to endurance treadmill exercise training (∼65% of maximal exercise ability for 60 min/day) for 12 wk. After exercise training, maximal exercise ability was significantly increased by 5% in WT mice ( n = 6), whereas it was significantly decreased by 37% in SARKO mice ( n = 5). Cardiac function assessed by echocardiographic examination was significantly decreased in accordance with upregulation of biomarkers of cardiac stress in SARKO mice after training. After training, expression levels of SERCA2a protein were significantly downregulated by 30% in SARKO hearts, whereas they were significantly upregulated by 59% in WT hearts. Consequently, SERCA2 activity was significantly decreased in SARKO hearts after training. Furthermore, the expression levels of other Ca2+-handling proteins, including phospholamban, ryanodine receptor 2, calsequestrin 2, and sodium/calcium exchanger 1, were significantly decreased in SARKO hearts after training. These results indicate that SAR plays a critical role in maintaining cardiac function under physiological stresses, such as endurance exercise, by regulating Ca2+ transport activity into the SR. SAR may be a primary target for exercise-related adaptation of the Ca2+ storage system in the SR to preserve cardiac function.


2015 ◽  
Vol 38 (5) ◽  
pp. 409-415 ◽  
Author(s):  
Sumihito Haseba ◽  
Harutoshi Sakakima ◽  
Takuro Kubozono ◽  
Syuhei Nakao ◽  
Satoshi Ikeda

1996 ◽  
Vol 270 (1) ◽  
pp. H121-H126 ◽  
Author(s):  
J. K. Shoemaker ◽  
H. J. Green ◽  
J. Coates ◽  
M. Ali ◽  
S. Grant

The purpose of this study was to investigate the time-dependent effects of long-term prolonged exercise training on vascular volumes and hematological status. Training using seven untrained males [age 21.1 +/- 1.4 (SE) yr] initially consisted of cycling at 68% of peak aerobic power (VO2peak) for 2 h/day, 4-5 days/wk, for 11 wk. Absolute training intensity was increased every 3 wk. Red cell mass (RCM), obtained using 51Cr, was unchanged (P > 0.05) with training (2,142 +/- 95, 2,168 +/- 86, 2,003 +/- 112, and 2,080 +/- 116 ml at 0, 3, 6, and 11 wk, respectively) as were serum erythropoietin levels (17.1 +/- 4.3, 13.9 +/- 3.5, and 17.0 +/- 2.0 U/l at 0, 6, and 11 wk, respectively). Plasma volume measured with 125I-labeled albumin and total blood volume (TBV) were also not significantly altered. The increase in mean cell volume that occurred with training (89.7 +/- 0.95 vs. 91.0 +/- 1.0 fl, 0 vs. 6 wk, P < 0.05) was not accompanied by changes in either mean cell hemoglobin or mean cell hemoglobin concentration. Serum ferritin was reduced 73% with training (67.4 +/- 13 to 17.9 +/- 1 microgram/l, 0 vs. 11 wk, P < 0.05). Total hemoglobin (HbTot) calculated as the product of hemoglobin concentration and TBV was unaltered (P > 0.05) at both 6 and 11 wk of training. The 15% increase in VO2peak (3.39 +/- 0.16 to 3.87 +/- 0.14 l/min, 0 vs. 11 wk, P < 0.05) with training occurred despite a failure of training to change TBV, RCM, or HbTot.


1995 ◽  
Vol 14 (4) ◽  
pp. 177-182 ◽  
Author(s):  
Soo Hyun Kim ◽  
Kiyoji Tanaka ◽  
Yasuhito Kumazaki ◽  
Kou Mizuno ◽  
Masaki Takeda ◽  
...  

2017 ◽  
Vol 26 ◽  
pp. 125-135 ◽  
Author(s):  
XM Li ◽  
X Pang ◽  
H Zheng ◽  
XJ Li ◽  
SJ Fu ◽  
...  

2010 ◽  
Vol 12 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Ching-Yi Chen ◽  
Hsiu-Ching Hsu ◽  
Bai-Chin Lee ◽  
Hung-Ju Lin ◽  
Ying-Hsien Chen ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Vineeta Tanwar ◽  
Kristin I Stanford ◽  
Loren E Wold

Objective: Exposure to particulate matter 2.5 μm (PM2.5) during intrauterine development is associated with adverse cardiovascular outcomes at adulthood. Deteriorations in cardiac function are observed with increased myocardial demand in PM2.5-exposed individuals. The goal of this study was to determine the effects of in utero PM2.5exposure on exercise training capacity and cardiac function in adult mice. Methods: Female FVB mice were exposed either to filtered air (FA) or PM2.5at an average concentration of 73.61μg/m 3 for 6h/day, 7days/wk throughout pregnancy. 12wk old male offspring from exposed dams were assigned to in utero FA (n=5) or PM2.5 (n=5) exposed groups which underwent exercise training for 3 weeks (housed with running wheels for 3 weeks). We measured total distance travelled and performed echocardiography at baseline, 1, 2 and 3 weeks. Results: There was a progressive decrease in total distance travelled each week in the in utero PM2.5 exposed mice (Week 1: 12.2±3.46 Km FA, 5.32±2.06 Km PM2.5; Week 2: 41.4±9.62 Km FA, 17.28±6.60 Km PM2.5; Week 3: 61.8±16.59 Km FA, 25.92.±8.62 Km PM2.5) compared to the in utero FA exposed mice. When comparing to their respective sedentary counterparts, the FA exercise group showed increased fractional shortening (%FS), left ventricular end systolic (LVESd) and diastolic (LVEDd) diameters, suggesting eccentric hypertrophy. There was a modest decrease in %FS and marked increase in posterior wall thickness during diastole (PWTd) in the PM2.5 exercise group suggesting concentric hypertrophy. Comparison of in utero FA vs PM2.5 exercise groups after 3 weeks of exercise training showed reduced %FS and marked decrease in LVEDd in the PM2.5 exercise group compared to the FA exercise group. Furthermore, a decrease in PWTs and increased PWTd was also observed in the PM2.5 group compared to FA controls. Conclusions: In utero PM2.5exposure reduced exercise capacity at adulthood and the development of both systolic and diastolic dysfunction. Thus, our study showed that individuals residing in high pollution areas are predisposed to develop cardiac dysfunction under conditions of increased myocardial demand.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222334
Author(s):  
Rafael Aguiar Marschner ◽  
Patrícia Banda ◽  
Simone Magagnin Wajner ◽  
Melissa Medeiros Markoski ◽  
Maximiliano Schaun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document