Effects of shaping and heat treatment conditions on the magnetic characteristics of ferrites with a rectangular hysteresis loop (RHL)

1974 ◽  
Vol 13 (7) ◽  
pp. 557-559
Author(s):  
M. A. Zinovik
2014 ◽  
Vol 215 ◽  
pp. 364-367 ◽  
Author(s):  
Irina A. Gudim ◽  
Evgeny V. Eremin ◽  
Maksim S. Molokeev ◽  
Vladislav L. Temerov ◽  
Nikita V. Volkov

HoAl3-xGax(BO3)4 (0 ≤ х ≤ 3) single crystals were grown from Bi2Mo3O12Li2MoO4-based fluxes. Structural inversion twinning depending on crystal composition and heat treatment conditions is revealed. It is established that upon substitution of Ga3+ ions for Al3+ the magnetic characteristics of the crystals do not significantly change, while the magnetoelectric polarization decreases with increasing gallium content. The measured value and sign of polarization charges depend on a ratio between the left and right isomers.


1999 ◽  
Vol 577 ◽  
Author(s):  
M.Q. Huang ◽  
W.E. Wallace ◽  
M.E. Mchenry ◽  
S.G. Sankar ◽  
Qun Chen ◽  
...  

ABSTRACTA brief review is presented of recent work dealing with the structure and magnetic properties of RCo7−x Zrx alloys (R=Sm, Pr, Er, Gd, and Y). The experimental results obtained are consistent with a model in which Zr atoms partly replace dumbbell Co atoms and play an important role in stabilizing the TbCu7 structure while significantly increasing the anisotropy field (HA). For example, when R=Sm, HA increases from 90 kOe for x=O to 130 kOe for x=0.2 at 300 K, and from 140 kOe for x=0 to 220 kOe for x=0.2 at 10 K. In the case of R=Y and Gd, HA is mainly contributed by the Co sublattice. For R=Y alloys, HA increases from 18 kOe for x=0 to 74 kOe for x=0.2 at 300 K and from 20 kOe for x=0 to 82 kOe for x=0.2 at 10 K. For R=Gd alloys, HA shows the largest enhancement. It increases from 35 kOe for x=0 to 140 kOe for x=0.2 at 300 K and from planar for x=0 to uniaxial with 182 kOe for x=0.2 at 10 K. In general, experimental results are in accord with the theory of Greedan and Rao for anisotropies of R-Co alloys. The magnetic moments for cobalt and rare earth in RCo7−xrx compounds (x=0∼A).2) have been estimated from the experimental values. The results show that they are nearly the same as those in RCo5 or R2Co17. The Co moment is 1.5∼;1.6 μB. Some phase transition phenomenon between RCo5, RCo7, R2Co17and R2Co7at different heat treatment conditions will also be discussed.


Author(s):  
E S Gorkunov ◽  
Y V Subachev ◽  
S M Zadvorkin ◽  
A I Ulyanov ◽  
L S Goruleva

In this study, investigation results on the effect of heat treatment conditions on the mechanical properties, internal stresses, magnetic characteristics, and electrical resistivity of powder steel 50Ni2Mo are presented. Coercive force and maximum magnetization are shown to be applicable as magnetic test parameters to reveal underheating for quenching. Heating for quenching above the critical point [Formula: see text] up to 910°С has an insignificant effect on the mechanical characteristics of the steel tested. It has been demonstrated that the use of the coercive force measured on minor magnetic hysteresis loops is preferable when estimating the level of applied tensile stresses in heat-treated powder steel 50Ni2Mo.


2008 ◽  
Vol 388 ◽  
pp. 213-216 ◽  
Author(s):  
Yumi Inagaki ◽  
Kenichi Kakimoto ◽  
Hitoshi Ohsato

Mn-doped Na0.5K0.5NbO3 (NKN) crystals have been grown by self-flux method under several heat-treatment conditions. The cooling rate affected the quality of Mn-doped NKN crystals significantly. When the cooling rate was 0.5 oC/min at temperatures ranging from 1050 to 950 oC, the synthesized Mn-doped NKN crystal exhibited a single nucleation growth, compared with multinucleation growth when the cooling rate was 0.25 oC/min at temperatures ranging from 1050 to 950 oC. The frequency dependence on the ferroelectric P-E hysteresis loop of the Mn-doped NKN crystal was not observed at measurement frequency of 0.1 – 25 Hz. The annealed 0.5 mol% Mn-doped NKN crystal exhibited excellent P-E hysteresis loop with Pr of 45.0 μC/cm2 and Ec of 7.2 kV/cm.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 35-44
Author(s):  
S. G. Sandomirski

The main magnetic parameters sensitive to the structure of steels are the parameters of their saturation loop of magnetic hysteresis: the coercive force Hcs and remanent magnetization Mrs. The saturation magnetization or saturation intensity Mr is most sensitive to the phase composition of steels. The variety of steel grades and modes of technological treatment (e.g., heat treatment, mechanical load) determined the use of magnetic structurescopy and magnetic characteristics — the coercive force Hc, remanent magnetization Mr , and specific hysteresis losses Wh on the subloops of the magnetic hysteresis of steels — as control parameters in diagnostics of the stressed and structural states of steel structures and pipelines. It has been shown that changes in Hc, Mr , and Wh are more sensitive to structural stresses and structures of steels than the parameters of the saturation hysteresis loop of magnetic hysteresis (Hcs, Mrs, and Mrs). The formulas for calculating Hc, Mr and Wh are presented to be used for estimation of changes in the parameters upon heat treatment of steels. Features of the structural sensitivity of the subloop characteristics and expediency of their use for magnetic structural and phase analyzes are determined. Thus, the range of changes in Ìr attributed to the structural changes in steels upon gradual Hm decrease is many times wider compared to the range of possible changes in Mrs under the same conditions. Conditions (relations between the magnetic parameters) and recommendations regarding the choice of the field strength Hm are given which provide the justified use of Hc, Mr and Wh parameters in magnetic structurescopy


2019 ◽  
pp. 145-150
Author(s):  
T. O. Soshina ◽  
V. R. Mukhamadyarovа

The defects destroy the integrity of the enamel, and the paper examines the influence of the physical-mechanical and corrosion properties of frits and heat treatment on the defectiveness of the enamel coating. The surface defects were scanned by electron microscope. It has been established that the defectiveness of enamel coatings depends on the melting index, temperature coefficient of linear expansion, surface tension of the frits, and heat treatment conditions. When burning rate of the enamel coating decreases, the fine-meshed structure of the enamel changes, and the size of the defects decreases.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


Author(s):  
G. Yu. Shakhgil’dyan ◽  
A. A. Mikhailov ◽  
T. O. Lipat’eva ◽  
K. I. Piyanzina ◽  
E. A. Kolesnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document